west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Migration" 14 results
  • A549 Cells Promote HUVEC Migration and Angiogenesis under Hypoxic Conditions

    ObjectiveTo observe the effects of A549 cells under hypoxicconditions on the migration of human umbilical vein endothelial cells (HUVECs) and microvascular formation. MethodsAfter cultured for 24 h in normoxia condition(21% O2),hypoxia condition (2% O2),and anaerobic condition (0% O2),respectively,morphology of A549 cells was observed with inverted phase contrast microscope,proliferation was detected by MTT assay,and intracellular hypoxia-inducible factor-1α (HIF-1α) protein was detected by immunocyto-chemical technique,for determining whether the hypoxia model is successful. Then A549 cells' supernatant in the normoxic group,the hypoxia group and HUVECs culture medium were taken to intervene HUVECs. The migration of HUVECs was observed with cell scratch test,pseudopodia formation of HUVECs was observed with microfilament green fluorescent staining method,and blood vessel formation was observed with three-dimensional culture techniques in vitro. ResultsCompared with the normoxic group,the growth of A549 cells was better in the hypoxia group with more proliferation,and was poor in the anaerobic group with decreased number of cells. A549 cells in the hypoxia group and the anaerobic group both expressed HIF-1α protein,which was more obvious in the anaerobic group. Compared with the HUVECs supernatant intervention group,the hypoxia supernatant intervention group and the normoxic supernatant intervention group both had varying degrees of migration,pseudopodia structure formation and vascular lumen sample structure formation,which were more obvious in the former group. ConclusionA549 cells in hypoxic environment grow very well,proliferated significantly,but anaerobic environment is not conducive to the growth of A549 cells which found to be apoptosis. A549 cells in hypoxic environment can promote HUVECs migration,pseudopodia formation and angiogenesis.

    Release date:2016-08-30 11:31 Export PDF Favorites Scan
  • EFFECTS OF ESTROGEN ON PROLIFERATION AND MIGRATION OF HUMAN EPIDERMAL STEM CELLS IN VITRO

    Objective In vivo, the microenvironment of epidermal stem cells (ESCs) is complex, and estrogen might be involved in the micro environment. To investigate the biological effects of estrogen on the prol iferation and migration of ESCs in vitro. Methods hESCs were isolated from normal human foreskin and cultured. The second generation of hESCs were identified with flow cytometry after being marked with integrin β1, cytokeratin 19 (CK19), CK14, and CK10 antigens.hESCs of 2 × 106 cell density were cultured with ESCs special medium supplemented with 0.1 nmol/L Diethylstilbestrol in group A (estrogen group), with ESCs special medium supplemented with 10 nmol/L Raloxifene hydrochloride in group B (ER blocking agent group), and with ESCs special medium in group C (control group), respectively. The 100 μm “scratch” wounds were created by scraping confluent hESCs plated on Petri dishes with a sterile pipette tip in vitro. The migrating cells from the wound edge were quantified at 24, 48, and 72 hours after incubation. The rates of wound heal ing were calculated by SigmaScan Pro 5.0 software at 72 hours. The prol iferating effect of estrogen on hESCs was determined with MTT method at 24, 48, 72, 96, and 120 hours. Results Cultured primary hESCs could adhere to the wall showing ovoid in shape and grew into colonies. Flow cytometry showed the positive results for integrin β1, CK19, and CK14 (with positive rate of 96.63%, 95.47%, and 94.27%, respectively) and the negative result for CK10 (with positive rate of 1.32%). In group A, the number of cells crossing the wound edge was more than those of group B and group C at 24, 48, and 72 hours. The rates of wound heal ing were 69.00% ± 0.05% in group A, 35.00% ± 0.05% in group B, and 48.00% ± 0.06% in group C at 72 hours, showing significant differences among groups (P lt; 0.05). The prol iferating speed of hESCs was significantly higher in group A than in groups B and C (P lt; 0.01), and significantly higher in group C than in group B (P lt; 0.01) at 24, 48, 72, 96, and 120 hours. Conclusion The estrogen can promote the prol iferation and migration of hESCs in vitro. It may be involved in many biological activity of skin.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • CYTOBIOLOGICAL EFFECT OF ADIPOSE-DERIVED STEM CELLS TREATED WITH INSULIN ON HaCaT CELLS

    To isolate and culture adi pose-derived stem cells (ADSCs), and to study the effects of the conditioned medium of ADSCs (ADSC-CM) treated with insul in on HaCaT cells. Methods ADSCs were isolated from adipose tissue donated by the patient receiving abdominal surgery and were cultured. The concentration of ADSCs at passage 3 was adjusted to 5 × 104 cells/mL. The cells were divided into 2 groups: group A in which the cells were incubated in 1 × 10-7 mol/ Linsul in for 3 days, and group B in which the cells were not treated with insul in. ADSC-CM in each group was collected 3 days after culture, then levels of VEGF and hepatocyte growth factor (HGF). HaCaT cells were cultured and the cells at passage 4 were divided into 4 groups: group A1, 0.5 mL 2% FBS and 0.5 mL ADSC-CM from group A; group B1, 0.5 mL 2% FBS and 0.5 mL ADSC-CM from group B; group C1, 1 mL 2% FBS of 1 × 10-7 mol/ L insul in; group D1, 1 mL 2%FBS. Prol iferation of HaCaT cells was detected by MTT method 3 days after culture, apoptosis rate of HaCaT cells was measured by Annexin V-FITC double staining 12 hours after culture, and the migration abil ity was measured by in vitro wound-heal ing assay 0, 12, 24, 36 and 48 hours after culture. Results The level of VEGF in groups A and B was (643.28 ± 63.57) and (286.52 ± 46.68) pg/mL, respectively, and the level of HGF in groups A and B was (929.95 ± 67.52) and (576.61 ± 84.29) pg/mL, respectively, suggesting differences were significant between two groups (Plt; 0.05). Cell prol iferation detection showed the absorbance value of HaCaT cells in group A1, B1, C1 and D1 was 0.881 ± 0.039, 0.804 ± 0.041, 0.663 ± 0.027 and 0.652 ± 0.042, respectively, suggesting there was significant difference between groups A1 and B1 and groups C1 and D1 (P lt; 0.01), group A1 was significantly higher than group B1 (P lt; 0.05). The apoptosis rate of HaCaT cells in groups A1, B1, C1 and D1 was 5.23% ± 1.98%, 8.82% ± 2.59%, 31.70% ± 8.85% and 29.60% ± 8.41%, respectively, indicating there was significant difference between groups A1 and B1 and groups C1 and D1 (P lt; 0.05), group B1 was significantly higher than group A1 (P lt; 0.05). The migration distance of HaCaT cells in groups A1, B1,C1 and D1 at 36 hours was (0.184 6 ± 0.019 2), (0.159 8 ± 0.029 4), (0.059 2 ± 0.017 6) and (0.058 2 ± 0.012 3) mm, respectively, whereas at 48 hours, it was (0.231 8 ± 0.174 0), (0.205 1 ± 0.012 1), (0.079 2 ± 0.008 1) and (0.078 4 ± 0.011 7) mm, respectively, suggesting there were significant differences between groups A1 and B1 and groups C1 and D1 at 36 and 48 hours (P lt; 0.01), group A1 was significantly higher than group B1 (P lt; 0.05) at 36 and 48 hours, no significant difference was evident at other time points(P gt; 0.05). Conclusion ADSCs treated with insul in can significantly promote the prol iferation and the migration of HaCaT cells and inhibit their apoptosis.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY ON THE ROLE OF KERATIN IN ANGIOGENESIS IN VITRO

    Objective To investigate the effect of keratin 17 (K-17) on the migration, prol iferation and tube formation of human umbil ical vein endothel ial cell (HUVEC), and to real ize the role of K-17 in angiogenesis. Methods After HUVEC were cultured in DMEM medium supplemented with 10%FBS overnight, K-17-siRNA-mixture (experimental group) and Ncontrol-siRNA-mixture (negative control group) were added into HUVEC, respectively, by Lipofectamine 2000 transfection assay, and the final concentration of the siRNA was 50 nmol/L. Lipofectamine 2000 alone was used as the control. After the cells were cultured for 36 hours, the cell prol iferation abil ity was detected by cell counting. After 30-hour culture, the cell’s abil ities of migration and differentiation to tube were detected by 24-well Mill icell units and the collagen gel assay, respectively. In addition, non-siRNA-treated HUVEC were cultured for 24 hours in DMEM medium supplemented with 10%FBS (group A), 2%FBS (group B) and 2%FBS+10 ng/mL bFGF (group C), respectively, and then the expression of K-17 in HUVEC was detected by RT-PCR and Western blot. Results After the treatment with K-17-siRNA for 36 hours, HUVEC exhibited no significant difference in the prol iferation, compared with both control and negative control groups (P gt; 0.05). After transfected with K-17-siRNA for 30 hours, the number of HUVEC in the experimental group which migrated from the upper chamber to the lower chamber of Mill icell wells within 24 hours (3719.0 ± 319.0) was smaller than both control (7 437.5 ± 212.0) and negative control (7 356.3 ± 795.7) groups, with significant difference (P lt; 0.01). However, there was no significant difference between the control group and the negative control group (P gt; 0.05). After HUVEC were transfected with K-17- siRNA for 30 hours, the number of tubes in the experimental group, the negative control group and the control group in 24 hours was (1.1 ± 0.5), (3.6 ± 0.5) and (3.2 ± 0.6) per field, respectively. The experimental group was significantly different from both control and negative control groups (P lt; 0.01), and there was no significant difference between the negative control group and the control group (P gt; 0.05). The expression of K-17 protein in HUVEC in groups A, B and C was 0.25 ± 0.02, 0.08 ± 0.01 and 0.72 ± 0.03, respectively. There was significant difference among these three groups (P lt; 0.01). Conclusion K-17 has no impact on cell prol iferation, but may augment endothel ial cell migration, which may facil itate angiogenesis.

    Release date:2016-09-01 09:18 Export PDF Favorites Scan
  • A STUDY ON MIGRATION OF SCHWANN CELLS IN ACELLULAR NERVE ALLOGRAFT OF RAT

    Objective To study the migration of Schwann cells from the nerve autograft in the acellular nerve allograft of the rats in vivo. Mehtods The sciatic nerves (20 mm long) of the SD rats were harvested and prepared for the acellular nerve grafts by the chemical extraction. Then, they were observed by the gross view, HE staining, and Antilamininstaining, respectively. Another 32 female SD rats weighing 250-300 g were obtained for the study. A 2-mm-long nerve autograft was interposed between the two 10-mm-long nerve allografts to form a 22-mm-long composite. Then, the composite was placed in the muscle space, together with a sole 22-mm-long nerve allograftas a control. They were harvested at 5,10,15 and 20 days, respectively, and were then given the HE staining and the S-100 staining. Results The acellular nerve graft was semitransparent under the gross view. HE staining showed that no cell was observed within the nerve graft. Anti-laminin staining showed that the basal membrane was partially interrupted, with a positive result (dark brown). All the nerve grafts in both the groups exhibited the existenceof the cells. The S-100 positive cells were observed from the 15th day at the far ends of the two allografts of the composite; however, there were no suchcells observed within the sole nerve allograft. Conclusion Schwann cells from the sciatic nerves (2 mm- long) of the rats can migrate in the acellular nerve allograft to the far ends of the neighboring 10-mm-long nerve allografts at 15 days after operation, which offers the theoretical basis forthe repair of the longrange nerve defect by the composite of the acellular nerve allografts with the interposed nerve autograft.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • EFFECT OF EXOGENOUS BASIC FIBROBLAST GROWTH FACTOR ON PROLIFERATION AND MIGRATION OFENDOTHELIAL CELLS OF PARTIAL THICKNESS SCALD IN RATS

    Objective To observe the proliferation and migration of endothelial cells after 30% total burn surface area (TBSA) of deep partial thickness scald, and the effect of basic fibroblast growth factor (bFGF) on angiogenesis during wound healing.Methods A total of 133 male Wistar ratswere divided randomly into normal control (n=7), injured control group (n=42), bFGF group (n=42) andanti-c-fos group (n=42). The apoptosis expression of fibroblasts was determinedwith in situ hybridization and the changes of proliferation cell nuclear antigen(PCNA), focal adhesion rinase(FAK), c-fos and extracellular signalregulated kinase(ERK) proteins expression were detected with immunohistochemistry staining technique after 3 hours, 6 hours, 1 day, 3 days, 7 days, 14 days and 21 days of scald.Results In injured control group and bFGF group, theproliferation rate of the vascular endothelial had evident changes 7 days and14 days after scald; the expression of FAK was increased 14 days after scald. ERK proteins expression was different between injury control group and bFGF group at initial stage after scald. Stimulation of ERKs by bFGF led to up-regulation of c-fos and b expression of FAK. Conclusion Exogenous bFGF extended the influence on wound healing process by ERK signaling pathway, affecting migration cascade of vascular endothelial cell. The oncogene proteins play an important role on accelerating angiogenesis duringwound healing.

    Release date: Export PDF Favorites Scan
  • The Influence of Human NF-κBp65 NLS Deletion Mutant Plasmids on Malignant Phenotype of A549 Lung Cancer Cells

    ObjectiveTo identify the expression functions of human NF-κBp65 nuclear localization signals' deletion mutant plasmids(namely pcDNA3.1(+)-NF-κBp65ΔNLS, NF-κBp65ΔNLS, for short) and the changes of proliferation, migration and adhesion ability of A549 lung cancer cells with low expression of NF-κBp65 (namely A549/NF-κBp65 shRNA cells). MethodsHuman A549/NF-κBp65 shRNA cells were cultivated and divided into a control group, a transfection pcDNA3.1 (+) group, and a transfection NF-κBp65ΔNLS group. Indirect immunofluorescence, real-time fluorescent quantitative PCR and Western blot techniques were used to detect the NF-κBp65 intracellular localization and the change of NF-κBp65 mRNA and protein expression level. MTT, Transwell and cell adhesion experiments were used to analyze the changes of proliferation, migration and adhesion ability of A549/NF-κBp65 shRNA cells. ResultsThe human NF-κBp65ΔNLS eukaryotic expression plasmid was successfully constructed. Compared with the control group and the transfection pcDNA3.1(+) group, NF-κBp65 mRNA expression level in A549/NF-κBp65 shRNA cells was increased in the transfection NF-κBp65ΔNLS group(10.63±0.84 vs. 1.04±0.21 and 1.23±0.22, P < 0.01) and NF-κBp65 protein expression level was also increased (1.07±0.06 vs. 0.53±0.02 and 0.59±0.04, P < 0.01). NF-κBp65 protein mainly located in the cytoplasm, and did not significantly transferred into the nucleus after stimulated by TNF-α. At the same time, A549/NF-κBp65 shRNA cells' proliferation, migration and adhesion ability were enhanced compared with the control group and the transfection pcDNA3.1(+) group. ConclusionsThrough gene mutation technology to build the human NF-κBp65ΔNLS eukaryotic expression plasmid and transfect into A549/NF-κBp65 shRNA lung cancer cell lines, both mRNA and protein expression levels of NF-κBp65 were increased significantly, and NF-κBp65 protein mainly located in the cytoplasm. The overexpressed NF-κBp65 in cytoplasm can obviously enhance the A549/NF-κBp65 shRNA cell's proliferation, migration and adhesion ability. It suggests that NF-κBp65 stranded in the cytoplasm can still regulate biological behavior of lung cancer cells by influencing the NF-κB signaling pathway related proteins.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Effect of MicroRNA-31 on Migration and Invasion of AGS Cells of Gastric Cancer and on The Expression Change of LRH-1

    ObjectiveTo investigate the effect of up-regulation of microRNA-31(miR-31) on the biological behaviour in AGS cell of gastric cancer and on the expression of liver receptor homolog-1(LRH-1), and to analyze the possible mechanisms of miR-31 on initiation and development of gastric cancer. MethodsAGS cells were divided into 3 groups, receiving miR-31 transfection(MT group), empty liposomes transfection(NC group), and treatment of PBS (BC group). Then the cells' proliferation was determined by cell counting kit-8(CCK-8), the apoptosis situation was determined by flow cytometer, the migration was determined by Transwell test, the expression of LRH-1 protein was tested by Western blot method, and the target of miR-31 was tested by luciferase reporter assay. ResultsThe cell's proliferation results showed that the mean of A450 value in MT, NC, and BC groups were 1.31, 2.26, and 2.14 respectively on the 4 days after transfection, which lower in MT group(P<0.01).Results of flow cytometer experiment showed that the mean of apoptosis ratio of MT, NC, and BC groups were 39.5%, 9.3%, and 10.0% respectively, the mean of proportion of cell in G1+S stage were 92.54%, 73.23%, and 74.58% respectively, which both lower in MT group (P<0.05).Results of Transwell experiment showed that the mean of number of migrated cells in MT group was lower (P<0.05).Results of Western blot experiment demonstrated that the expression level of LRH-1 protein in MT group was lower than those of BC group and NC group(P<0.01). ConclusionsUp-regulation of miR-31 can obviously inhibit the proliferation of AGS cell, promoting its apoptosis and depressing its migration ability. On the other side, the up-regulation of miR-31 can also inhibit the expression level of LRH-1 protein, which indirectly induces the inhibition of proliferation of AGS cell. So miR-31 may be an important regulator in the initiation and development of gastric cancer through regulating LRH-1 gene.

    Release date: Export PDF Favorites Scan
  • Overexpress Ovol2 Gene Inhibiting the Migration and Invasion Ability of Lung Adeno-carcinoma

    ObjectiveTo explore the effectiveness of Ovol2 gene for epithelial-mesenchymal transition (EMT) to offer some theory evidences for the targeted therapy in lung adenocarcinoma. MethodsA549 cells were treated with control and Ovol2 overexpressioned by lentivirus infection. Real-time PCR were performed to test the mRNA level of genes correlated to EMT. Western Blot was performed for protein level of the following makers:E-cadherin, N-cadherin, vimentin, ect. Moreover, we tested the migration and invasion ability of A549 cells by transwell and wound healing experiment. ResultsAfter treated with Ovol2 overexpressed, the expression level of E-cadherin raised, while the expression level of N-cadherin, vimentin and Twist1 declined in both mRNA and protein expression level. The results of wound healing and transwell experiment indicated that the migration and invasion ability of A549 cells weakened. ConclusionOverexpression of Ovol2 gene can suppress the distant metastasis ability and invasion ability of A549 cells by inhibiting the EMT.

    Release date: Export PDF Favorites Scan
  • The Influence of Hypoxia Microenvironment on Metastasis Induced by Epithelial-Mesenchymal Transition of Human Lung Adenocarcinoma

    ObjectiveTo investigate the influence of hypoxia on pro-metastasis induced by epithelial-mesenchymal transition (EMT) of human lung adenocarcinoma. MethodsThe human lung cancer cell line H460 was cultured in hypoxic condition and the morphologic changes of the cells were observed under the microscope. The EMT-related markers including E-cadherin and vimentin were detected by Western blot. Transwell migration assay and transwell invasion assay were employed to detect the migratory and invasive activity of cancer cells. ResultsHypoxic induced morphological changes were consistent with the mesenchymal phenotype, such as an elongated fibroblastic morphology, and conversion from a tightly packed epithelial cobblestone pattern to a loosely packed scattered phenotype. Compared with the control group, hypoxic attenuated the quantity of E-cadhenrin, but increased vimentin, which resulted in promotion of migration and invasion of H460. ConclusionHypoxia induces EMT in H460 and enhances the invasive and migratory abilities of lung cancer cells.

    Release date:2016-10-21 01:38 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content