Laser photocoagulation, intravitreal injection of antibody against vascular endothelial growth factor (VEGF) or corticosteroids and pars plana vitrectomy are current popular therapeutic approaches for diabetic retinopathy (DR). However, some DR patients still progress to irreversible blindness even after the above treatments which do not aim at the pathological mechanisms and influence factors for DR. Thus, with the further elucidation on the molecular pathological mechanisms and overall understanding of the factors affecting DR development, more and more potential therapeutic interventions such as neuron protection, vascular reconstruction and protection, gene therapy, non-VEGF dependent anti-neovascularization agents have been explored. Individual precise therapy based on the potential therapeutic targets would provide the promising future for DR patients.
Citation: LiuYuhua, GaoLing. The status, problem and progress of diabetic retinopathy treatment. Chinese Journal of Ocular Fundus Diseases, 2016, 32(2): 206-210. doi: 10.3760/cma.j.issn.1005-1015.2016.02.024 Copy
1. | Alasil T, Waheed NK. Pan retinal photocoagulation for proliferative diabeticretinopathy: pattern scan laser versus argon laser[J]. Curr Opin Ophthalmol, 2014, 25(3):164-170. DOI: 10.1097/ICU.0000000000000048. |
2. | Vujosevic S, Martini F, Convento E, et al. Subthreshold laser therapy for diabetic macular edema:metabolic and safety issues[J]. Curr Med Chem, 2013, 20(26):3267-3271. |
3. | Chhablani J, Mathai A, Rani P, et al. Comparison of conventional pattern and novel navigated panretinal photocoagulation inproliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(6):3432-3438. DOI: 10.1167/iovs.14-13936. |
4. | Blumenkranz MS, Yellachich D, Andersen DE, et al. Semiautomated patterned scanning laser for retinal photocoagulation[J]. Retina, 2006, 26(3):370-376. |
5. | Sramek C, Paulus Y, Nomoto H, et al. Dynamics of retinal photocoagulation and rupture[J/OL].JBiomed Opt, 2009, 14(3):034007[2009-05-12]. http://biomedicaloptics.spiedigitallibrary.org/article.aspx?articleid=1103020. DOI: 10.1117/1.3130282. |
6. | Chappelow AV, Tan K, Waheed NK, et al. Panretinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser[J].AmJOphthalmol, 2012, 153(1):137-142. DOI: 10.1016/j.ajo.2011.05.035. |
7. | Yu AK,Merrill KD,Truong SN,et al. The comparative histologic effects of subthreshold 532- and 810-nm diode micropulse laser on the retina[J].Invest Ophthalmol Vis Sci, 2013, 54(3):2216-2224. DOI: 10.1167/iovs.12-11382. |
8. | Rutledge BK, Wallow IH, Poulsen GL. Sub-pigment epithelial membranes after photocoagulation for diabetic macular edema[J].Arch Ophthalmol, 1993, 111(5):608-613. |
9. | Luttrull JK,Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabeticmacular edema:areview[J]. Curr Diabetes Rev, 2012, 8(4):274-284.DOI: 10.2174/157339912800840523. |
10. | Othman IS,Eissa SA,Kotb MS, et al. Subthreshold diode-laser micropulse photocoagulation asaprimary and secondary line of treatment in management of diabetic macular edema[J]. Clin Ophthalmol, 2014, 8:653-659. DOI: 10.2147/OPTH.S59669. |
11. | Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema[J].BrJOphthalmol, 2009, 93(10):1341-1344. DOI: 10.1136/bjo.2008.146712. |
12. | Lavinsky D, Cardillo JA, Melo LA, et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2011, 52(7):4314-4323. DOI: 10.1167/iovs.10-6828. |
13. | Kernt M, Cheuteu R, Vounotrypidis E, et al. Focal and panretinal photocoagulation withanavigated laser (NAVILAS®)[J]. Acta Ophthalmol, 2011, 89(8):662-664. DOI: 10.1111/j.1755-3768.2010.02017.x. |
14. | Kozak I, Oster SF, Cortes MA, et al. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS[J].Ophthalmology, 2011, 118(6):1119-1124. DOI: 10.1016/j.ophtha.2010.10.007. |
15. | Neubauer AS, Langer J, Liegl R, et al. Navigated macular laser decreases retreatment rate for diabetic macular edema:Acomparison with conventional macular laser[J]. Clin Ophthalmol, 2013, 7:121-128. DOI: 10.2147/OPTH.S38559. |
16. | Holz FG, Dugel PU, Weissgerber G, et al. Single-chain antibody fragment VEGF inhibitor RTH258 for neovascular age-related macular degeneration:arandomized controlled study[J/OL]. Ophthalmology, 2016[2016-02-20]. http://www.sciencedirect.com/science/article/pii/S0161642015015535. DOI: 10.1016/j.ophtha.2015.12.030. [published online ahead of print]. |
17. | Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabeticretinopathy: overview of clinical efficacy and evolving applications[J]. Diabetes Care, 2014, 37(4):900-905. DOI: 10.2337/dc13-1990. |
18. | Saint-Geniez M, Kurihara T, Sekiyama E. An essential role for RPE-derived soluble VEGF in the maintenance of thechoriocapillaris[J]. Proc Natl Acad Sci USA, 2009, 106(44):18751-18756. DOI: 10.1073/pnas.0905010106. |
19. | Nishijima K, Ng YS, Zhong L, et al. Vascularendothelial growth factor-A isasurvival factor for retinal neurons andacriticalneuroprotectant during the adaptive response to ischemic injury[J]. AmJPathol, 2007, 171(1):53-67. |
20. | D′Amore PA. Vascular endothelial cell growth factor-a: not just for endothelialcells anymore[J]. AmJPathol, 2007, 171(1):14-18. |
21. | Simó R, Sundstrom JM, Antonetti DA. Ocular anti-VEGF for diabetic retinopathy:the role of VEGF in the pathogenesis of diabetic retinopathy[J]. Diabetes Care, 2014, 37(4):893-899. DOI: 10.2337/dc13-2002. |
22. | Gillies MC, Lim LL, Campain A, et al.Arandomized clinical trial ofintravitreal bevacizumab versus intravitreal dexamethasone for diabetic macularedema: the BEVORDEX study[J]. Ophthalmology, 2014, 121(12):2473-2481. DOI: 10.1016/j.ophtha.2014.07.002. |
23. | Ciulla TA, Harris A, McIntyre N, et al. Treatment of diabeticmacular edema with sustained-release glucocorticoids: intravitreal triamcinoloneacetonide, dexamethasone implant, and fluocinolone acetonide implant[J]. Expert Opin Pharmacother, 2014, 15(7):953-959. DOI: 10.1517/14656566.2014.896899. |
24. | Yong PH, Zong H, Medina RJ, et al. Evidence supportingarole for N-(3-formyl-3,4-dehydropiperidino) lysineaccumulation in Muller glia dysfunction and death in diabetic retinopathy[J]. Mol Vis, 2010, 16:2524-2538. |
25. | Stitt A, Gardiner TA, Alderson NL, et al. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes[J]. Diabetes, 2002, 51(9):2826-2832. |
26. | Kanwar M, Chan PS, Kern TS, et al. Oxidative damage in theretinal mitochondria of diabetic mice: possible protection by superoxide dismutase[J].Invest Ophthalmol Vis Sci, 2007, 48(8):3805-3811. |
27. | Simó-Servat O, Hernández C, Simó R. Usefulness of the vitreous fluidanalysis in the translational research of diabetic retinopathy[J/OL]. Mediators Inflamm, 2012, 2012:872978[2012-09-17].http://dx.doi.org/10.1155/2012/872978. DOI: 10.1155/2012/872978. |
28. | Kowluru RA,Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy[J].BrJOphthalmol, 2004, 88(10):1343-1347. |
29. | Liu X, Ye F, Xiong H, et al. IL-1b induces IL-6 production in retinal Müller cells predominantly through the activation of P38MAPK/NF-kB signaling pathway[J]. Exp Cell Res, 2015, 331(1):223-231. DOI: 10.1016/j.yexcr.2014.08.040. |
30. | Aveleira CA, Lin CM, Abcouwer SF. TNF-asignals through PKCz/NF-kB to alter the tight junction complex and increaseretinal endothelial cell permeability[J]. Diabetes, 2010, 59(11):2872-2882. DOI: 10.2337/db09-1606. |
31. | Reis A, Mateus C, Melo P, et al. Neuroretinal dysfunction with intact blood-retinal barrier and absent vasculopathyin type 1 diabetes[J].Diabetes, 2014, 63(11):3926-3937. DOI: 10.2337/db13-1673. |
32. | Kusari J, Zhou S, Padillo E. Effect of memantine onneuroretinal function and retinal vascular changes of streptozotocin-induceddiabetic rats[J]. Invest Ophthalmol Vis Sci, 2007, 48(11):5152-5159. |
33. | Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actionsof PEDF in the eye: molecular targets and therapeutic potential[J]. Prog Retin Eye Res, 2004, 23(5):561-577. |
34. | Longeras R, Farjo K, Ihnat M, et al.APEDF-derived peptide inhibitsretinal neovascularization and blocks mobilization of bone marrow-derivedendothelial progenitor cells[J/OL]. Exp Diabetes Res, 2012, 2012:518426[2011-06-28]. http://www.hindawi.com/journals/jdr/2012/518426/. DOI: 10.1155/2012/518426. |
35. | Wang Y, Lu Q, Gao S, et al. Pigment epithelium derived factor regulates glutamine synthetase and l-glutamate/l-aspartatetransporter in retinas with oxygen-induced retinopathy[J]. Curr Eye Res, 2015, 40(12):1232-1244. DOI: 10.3109/02713683.2014.990639. |
36. | Liu Y, Leo LF, McGregor C, et al.Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation,cell death and vascular leakage in diabetic retinopathy in Ins2(Akita)mice[J]. Mol Med, 2012, 18:1387-1401. DOI: 10.2119/molmed.2012.00008. |
37. | Hernández C, Carrasco E, Casamitjana R, et al. Somatostatin molecular variants in the vitreous fluid:acomparativestudy between diabetic patients with proliferative diabetic retinopathy andnondiabetic control subjects[J]. Diabetes Care, 2005, 28(8):1941-1947. |
38. | Hernández C, García-Ramírez M, Corraliza L, et al. Topical administration of somatostatin prevents retinal neurodegenerationin experimental diabetes[J]. Diabetes, 2013, 62(7):2569-2578. DOI: 10.2337/db12-0926. |
39. | Garcia-Ramírez M, Hernández C, Villarroel M, et al. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabeticretinopathy[J]. Diabetologia, 2009, 52(12):2633-2641. DOI: 10.1007/s00125-009-1548-8. |
40. | Jin M, Li S, Nusinowitz S, et al. The role of interphotoreceptor retinoid-binding protein on the translocation of visualretinoids and function of cone photoreceptors[J].JNeurosci, 2009, 29(5):1486-1495. DOI: 10.1523/JNEUROSCI.3882-08.2009. |
41. | Lois N, McCarter RV, O′Neill C, et al. Endothelial progenitorcells in diabetic retinopathy[J]. Front Endocrinol (Lausanne), 2014, 5:44. DOI: 10.3389/fendo.2014.00044. eCollection 2014. |
42. | Medina RJ,O′Neill CL,Sweeney M,et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities[J]. BMC Med Genomics, 2010,3:18. DOI: 10.1186/1755-8794-3-18. |
43. | Simó RR, Carrasco E, García-Ramírez M, et al. Angiogenic andantiangiogenic factors in proliferative diabetic retinopathy[J]. Curr Diabetes Rev, 2006, 2(1):71-98. |
44. | Joyal JS, Sitaras N, Binet F, et al. Ischemicneurons prevent vascular regeneration of neural tissue by secreting semaphorin3A[J]. Blood, 2011, 117(22):6024-6035. DOI: 10.1182/blood-2010-10-311589. |
45. | Bussolino F, Valdembri D, Caccavari F, et al. Semaphoring vascular morphogenesis[J]. Endothelium, 2006, 13(2):81-91. |
46. | Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies[J]. Prog Retin Eye Res, 2014, 43:108-128.DOI:10.1016/j.preteyeres.2014.08.001. |
47. | El-Bab MF, Zaki NS, Mojaddidi MA, et al. Diabetic retinopathy is associated with oxidative stress and mitigation of gene expression of antioxidant enzymes[J]. IntJGeneral Med, 2013, 6:799-806. DOI:10.2147/ijgm.s40665. |
48. | Wenick AS, Bressler NM. Diabetic macular edema: current and emerging therapies[J]. Middle East AfricanJOphthalmol, 2012, 19(1):4-12. DOI:10.4103/0974-9233.92110. |
49. | Nguyen QD, Schachar RA, Nduaka CI, et al. Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study)[J].Invest Ophthalmol Vis Sci, 2012, 53(12):7666-7674. DOI:10.1167/iovs.12-9961. |
50. | Hu B, Zhang Y, Zeng Q, et al. Intravitreal injection of ranibizumab and CTGF shRNA improves retinal gene expression and microvessel ultrastructure inarodent model of diabetes[J]. IntJMol Sci, 2014, 15(1):1606-1624. DOI:10.3390/ijms15011606. |
- 1. Alasil T, Waheed NK. Pan retinal photocoagulation for proliferative diabeticretinopathy: pattern scan laser versus argon laser[J]. Curr Opin Ophthalmol, 2014, 25(3):164-170. DOI: 10.1097/ICU.0000000000000048.
- 2. Vujosevic S, Martini F, Convento E, et al. Subthreshold laser therapy for diabetic macular edema:metabolic and safety issues[J]. Curr Med Chem, 2013, 20(26):3267-3271.
- 3. Chhablani J, Mathai A, Rani P, et al. Comparison of conventional pattern and novel navigated panretinal photocoagulation inproliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(6):3432-3438. DOI: 10.1167/iovs.14-13936.
- 4. Blumenkranz MS, Yellachich D, Andersen DE, et al. Semiautomated patterned scanning laser for retinal photocoagulation[J]. Retina, 2006, 26(3):370-376.
- 5. Sramek C, Paulus Y, Nomoto H, et al. Dynamics of retinal photocoagulation and rupture[J/OL].JBiomed Opt, 2009, 14(3):034007[2009-05-12]. http://biomedicaloptics.spiedigitallibrary.org/article.aspx?articleid=1103020. DOI: 10.1117/1.3130282.
- 6. Chappelow AV, Tan K, Waheed NK, et al. Panretinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser[J].AmJOphthalmol, 2012, 153(1):137-142. DOI: 10.1016/j.ajo.2011.05.035.
- 7. Yu AK,Merrill KD,Truong SN,et al. The comparative histologic effects of subthreshold 532- and 810-nm diode micropulse laser on the retina[J].Invest Ophthalmol Vis Sci, 2013, 54(3):2216-2224. DOI: 10.1167/iovs.12-11382.
- 8. Rutledge BK, Wallow IH, Poulsen GL. Sub-pigment epithelial membranes after photocoagulation for diabetic macular edema[J].Arch Ophthalmol, 1993, 111(5):608-613.
- 9. Luttrull JK,Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabeticmacular edema:areview[J]. Curr Diabetes Rev, 2012, 8(4):274-284.DOI: 10.2174/157339912800840523.
- 10. Othman IS,Eissa SA,Kotb MS, et al. Subthreshold diode-laser micropulse photocoagulation asaprimary and secondary line of treatment in management of diabetic macular edema[J]. Clin Ophthalmol, 2014, 8:653-659. DOI: 10.2147/OPTH.S59669.
- 11. Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema[J].BrJOphthalmol, 2009, 93(10):1341-1344. DOI: 10.1136/bjo.2008.146712.
- 12. Lavinsky D, Cardillo JA, Melo LA, et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2011, 52(7):4314-4323. DOI: 10.1167/iovs.10-6828.
- 13. Kernt M, Cheuteu R, Vounotrypidis E, et al. Focal and panretinal photocoagulation withanavigated laser (NAVILAS®)[J]. Acta Ophthalmol, 2011, 89(8):662-664. DOI: 10.1111/j.1755-3768.2010.02017.x.
- 14. Kozak I, Oster SF, Cortes MA, et al. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS[J].Ophthalmology, 2011, 118(6):1119-1124. DOI: 10.1016/j.ophtha.2010.10.007.
- 15. Neubauer AS, Langer J, Liegl R, et al. Navigated macular laser decreases retreatment rate for diabetic macular edema:Acomparison with conventional macular laser[J]. Clin Ophthalmol, 2013, 7:121-128. DOI: 10.2147/OPTH.S38559.
- 16. Holz FG, Dugel PU, Weissgerber G, et al. Single-chain antibody fragment VEGF inhibitor RTH258 for neovascular age-related macular degeneration:arandomized controlled study[J/OL]. Ophthalmology, 2016[2016-02-20]. http://www.sciencedirect.com/science/article/pii/S0161642015015535. DOI: 10.1016/j.ophtha.2015.12.030. [published online ahead of print].
- 17. Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabeticretinopathy: overview of clinical efficacy and evolving applications[J]. Diabetes Care, 2014, 37(4):900-905. DOI: 10.2337/dc13-1990.
- 18. Saint-Geniez M, Kurihara T, Sekiyama E. An essential role for RPE-derived soluble VEGF in the maintenance of thechoriocapillaris[J]. Proc Natl Acad Sci USA, 2009, 106(44):18751-18756. DOI: 10.1073/pnas.0905010106.
- 19. Nishijima K, Ng YS, Zhong L, et al. Vascularendothelial growth factor-A isasurvival factor for retinal neurons andacriticalneuroprotectant during the adaptive response to ischemic injury[J]. AmJPathol, 2007, 171(1):53-67.
- 20. D′Amore PA. Vascular endothelial cell growth factor-a: not just for endothelialcells anymore[J]. AmJPathol, 2007, 171(1):14-18.
- 21. Simó R, Sundstrom JM, Antonetti DA. Ocular anti-VEGF for diabetic retinopathy:the role of VEGF in the pathogenesis of diabetic retinopathy[J]. Diabetes Care, 2014, 37(4):893-899. DOI: 10.2337/dc13-2002.
- 22. Gillies MC, Lim LL, Campain A, et al.Arandomized clinical trial ofintravitreal bevacizumab versus intravitreal dexamethasone for diabetic macularedema: the BEVORDEX study[J]. Ophthalmology, 2014, 121(12):2473-2481. DOI: 10.1016/j.ophtha.2014.07.002.
- 23. Ciulla TA, Harris A, McIntyre N, et al. Treatment of diabeticmacular edema with sustained-release glucocorticoids: intravitreal triamcinoloneacetonide, dexamethasone implant, and fluocinolone acetonide implant[J]. Expert Opin Pharmacother, 2014, 15(7):953-959. DOI: 10.1517/14656566.2014.896899.
- 24. Yong PH, Zong H, Medina RJ, et al. Evidence supportingarole for N-(3-formyl-3,4-dehydropiperidino) lysineaccumulation in Muller glia dysfunction and death in diabetic retinopathy[J]. Mol Vis, 2010, 16:2524-2538.
- 25. Stitt A, Gardiner TA, Alderson NL, et al. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes[J]. Diabetes, 2002, 51(9):2826-2832.
- 26. Kanwar M, Chan PS, Kern TS, et al. Oxidative damage in theretinal mitochondria of diabetic mice: possible protection by superoxide dismutase[J].Invest Ophthalmol Vis Sci, 2007, 48(8):3805-3811.
- 27. Simó-Servat O, Hernández C, Simó R. Usefulness of the vitreous fluidanalysis in the translational research of diabetic retinopathy[J/OL]. Mediators Inflamm, 2012, 2012:872978[2012-09-17].http://dx.doi.org/10.1155/2012/872978. DOI: 10.1155/2012/872978.
- 28. Kowluru RA,Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy[J].BrJOphthalmol, 2004, 88(10):1343-1347.
- 29. Liu X, Ye F, Xiong H, et al. IL-1b induces IL-6 production in retinal Müller cells predominantly through the activation of P38MAPK/NF-kB signaling pathway[J]. Exp Cell Res, 2015, 331(1):223-231. DOI: 10.1016/j.yexcr.2014.08.040.
- 30. Aveleira CA, Lin CM, Abcouwer SF. TNF-asignals through PKCz/NF-kB to alter the tight junction complex and increaseretinal endothelial cell permeability[J]. Diabetes, 2010, 59(11):2872-2882. DOI: 10.2337/db09-1606.
- 31. Reis A, Mateus C, Melo P, et al. Neuroretinal dysfunction with intact blood-retinal barrier and absent vasculopathyin type 1 diabetes[J].Diabetes, 2014, 63(11):3926-3937. DOI: 10.2337/db13-1673.
- 32. Kusari J, Zhou S, Padillo E. Effect of memantine onneuroretinal function and retinal vascular changes of streptozotocin-induceddiabetic rats[J]. Invest Ophthalmol Vis Sci, 2007, 48(11):5152-5159.
- 33. Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actionsof PEDF in the eye: molecular targets and therapeutic potential[J]. Prog Retin Eye Res, 2004, 23(5):561-577.
- 34. Longeras R, Farjo K, Ihnat M, et al.APEDF-derived peptide inhibitsretinal neovascularization and blocks mobilization of bone marrow-derivedendothelial progenitor cells[J/OL]. Exp Diabetes Res, 2012, 2012:518426[2011-06-28]. http://www.hindawi.com/journals/jdr/2012/518426/. DOI: 10.1155/2012/518426.
- 35. Wang Y, Lu Q, Gao S, et al. Pigment epithelium derived factor regulates glutamine synthetase and l-glutamate/l-aspartatetransporter in retinas with oxygen-induced retinopathy[J]. Curr Eye Res, 2015, 40(12):1232-1244. DOI: 10.3109/02713683.2014.990639.
- 36. Liu Y, Leo LF, McGregor C, et al.Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation,cell death and vascular leakage in diabetic retinopathy in Ins2(Akita)mice[J]. Mol Med, 2012, 18:1387-1401. DOI: 10.2119/molmed.2012.00008.
- 37. Hernández C, Carrasco E, Casamitjana R, et al. Somatostatin molecular variants in the vitreous fluid:acomparativestudy between diabetic patients with proliferative diabetic retinopathy andnondiabetic control subjects[J]. Diabetes Care, 2005, 28(8):1941-1947.
- 38. Hernández C, García-Ramírez M, Corraliza L, et al. Topical administration of somatostatin prevents retinal neurodegenerationin experimental diabetes[J]. Diabetes, 2013, 62(7):2569-2578. DOI: 10.2337/db12-0926.
- 39. Garcia-Ramírez M, Hernández C, Villarroel M, et al. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabeticretinopathy[J]. Diabetologia, 2009, 52(12):2633-2641. DOI: 10.1007/s00125-009-1548-8.
- 40. Jin M, Li S, Nusinowitz S, et al. The role of interphotoreceptor retinoid-binding protein on the translocation of visualretinoids and function of cone photoreceptors[J].JNeurosci, 2009, 29(5):1486-1495. DOI: 10.1523/JNEUROSCI.3882-08.2009.
- 41. Lois N, McCarter RV, O′Neill C, et al. Endothelial progenitorcells in diabetic retinopathy[J]. Front Endocrinol (Lausanne), 2014, 5:44. DOI: 10.3389/fendo.2014.00044. eCollection 2014.
- 42. Medina RJ,O′Neill CL,Sweeney M,et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities[J]. BMC Med Genomics, 2010,3:18. DOI: 10.1186/1755-8794-3-18.
- 43. Simó RR, Carrasco E, García-Ramírez M, et al. Angiogenic andantiangiogenic factors in proliferative diabetic retinopathy[J]. Curr Diabetes Rev, 2006, 2(1):71-98.
- 44. Joyal JS, Sitaras N, Binet F, et al. Ischemicneurons prevent vascular regeneration of neural tissue by secreting semaphorin3A[J]. Blood, 2011, 117(22):6024-6035. DOI: 10.1182/blood-2010-10-311589.
- 45. Bussolino F, Valdembri D, Caccavari F, et al. Semaphoring vascular morphogenesis[J]. Endothelium, 2006, 13(2):81-91.
- 46. Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies[J]. Prog Retin Eye Res, 2014, 43:108-128.DOI:10.1016/j.preteyeres.2014.08.001.
- 47. El-Bab MF, Zaki NS, Mojaddidi MA, et al. Diabetic retinopathy is associated with oxidative stress and mitigation of gene expression of antioxidant enzymes[J]. IntJGeneral Med, 2013, 6:799-806. DOI:10.2147/ijgm.s40665.
- 48. Wenick AS, Bressler NM. Diabetic macular edema: current and emerging therapies[J]. Middle East AfricanJOphthalmol, 2012, 19(1):4-12. DOI:10.4103/0974-9233.92110.
- 49. Nguyen QD, Schachar RA, Nduaka CI, et al. Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study)[J].Invest Ophthalmol Vis Sci, 2012, 53(12):7666-7674. DOI:10.1167/iovs.12-9961.
- 50. Hu B, Zhang Y, Zeng Q, et al. Intravitreal injection of ranibizumab and CTGF shRNA improves retinal gene expression and microvessel ultrastructure inarodent model of diabetes[J]. IntJMol Sci, 2014, 15(1):1606-1624. DOI:10.3390/ijms15011606.
-
Previous Article
先天性黄斑缺损继发视网膜脱离二例 -
Next Article
The status and progress of relationship between dyslipidemia and diabetic retinopathy