1. |
王敏. 利用光相干断层扫描血管成像技术优势, 提升视网膜脉络膜血管疾病认知水平[J]. 中华眼底病杂志, 2016, 32(4): 353-356. DOI: 10.3760/cma.j.issn.1005-1015.2016.04.003.Wang M. Better understanding retinal and choroidal vascular diseases with optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis, 2016, 32(4): 353-356.
|
2. |
Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710-4725. DOI: 10.1364/OE.20.004710.
|
3. |
Gao SS, Liu G, Huang D, et al. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system [J]. Optics Letters, 2016, 41(3): 496. DOI: 10.1364/OL.40.002305.
|
4. |
Zhang A, Zhang Q, Chen CL, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison [J]. J Biomed Opt, 2015, 20(10): 100901. DOI: 10.1117/1.JBO.20.10.100901.
|
5. |
Krawitz BD, Mo S, Geyman LS, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography[J]. Vision Res, 2017, 139: 177-186.DOI: 10.1016/j.visres.2016.09.019.
|
6. |
Gong D, Yu W, Zhang X, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography [J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 254(5): 873-879. DOI: 10.1007/s00417-015-3143-7.
|
7. |
Freiberg FJ, Pfau M, Wins J, et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy [J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 254(6): 1051-1058.DOI: 10.1007/s00417-015-3148-2.
|
8. |
Takase N, Nozaki M, Kato A, et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2377-2383. DOI: 10.1097/IAE.0000000000000849.
|
9. |
王健, 陈松, 何广辉, 等. 无明显糖尿病视网膜病变的2型糖尿病患者黄斑区微血管改变的光相干断层扫描血管成像观察[J]. 中华眼底病杂志, 2017, 33(1): 15-18.DOI: 10.3760/cma.j.issn.1005-1015.2017.01.005.Wang J, Chen S, He GH, et al. Observation of macular microvascular changes in eyes of patients of type 2 diabetes without clinical features of diabetic retinopathy by optical coherence tomography angiography[J]. Chin J Ocul Fundus Dis, 2017, 33(1): 15-18. DOI: 10.3760/cma.j.issn.1005-1015.2017.01.005.
|
10. |
McLeod DS, Lefer DJ, Merges C, et al. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid [J]. Am J Pathol, 1995, 147(3): 642-653.
|
11. |
Miyamoto K, Khosrof S, Bursell SE, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition [J]. Proc Natl Acad Sci USA, 1999, 96(19): 10836-10841.
|
12. |
Mendis KR, Balaratnasingam C, Yu P,et al.Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail[J].Invest Ophthalmol Vis Sci,2010,51(11):5864-5869. DOI: 10.1167/iovs.10-5333.
|
13. |
Sambhav K, Abu-Amero KK, Chalam KV. Deep capillary macular perfusion indices obtained with OCT angiography correlate with degree of nonproliferative diabetic retinopathy[J]. Eur J Ophthalmol, 2017, 27(6): 716-729.DOI: 10.5301/ejo.5000948.
|
14. |
Simonett JM, Scarinci F, Picconi F, et al. Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus [J/OL]. Acta Ophthalmologica, 2017, 2017: E1[2017-02-16]. http://onlinelibrary.wiley.com/doi/10.1111/aos.13404/abstract;jsessionid=BCD384AE3E45A96CECF048CE18BB4706.f02t04. DOI: 10.1111/aos.13404.[Epublishedonline ahead of print].
|
15. |
Kim AY, Chu Z, Shahidzadeh A, et al. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 362-370.DOI: 10.1167/iovs.15-18904.
|
16. |
Haritoglou C, Kernt M, Neubauer A, et al. Microaneurysm formation rate as a predictive marker for progression to clinically significant macular edema in nonproliferative diabetic retinopathy[J]. Retina, 2014, 34(1): 157-164. DOI: 10.1097/IAE.0b013e318295f6de.
|
17. |
Nunes S, Pires I, Rosa A, et al. Microaneurysm turnover is a biomarker for diabetic retinopathy progression to clinically significant macular edema: findings for type 2 diabetics with nonproliferative retinopathy[J]. Ophthalmologica, 2009, 223(5): 292-297.DOI: 10.1159/000213639.
|
18. |
Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol, 2015, 160(1): 35-44. DOI: 10.1016/j.ajo.2015.04.021.
|
19. |
Hasegawa N, Nozaki M, Takase N, et al. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 348-355.DOI: 10.1167/iovs.15-18782.
|
20. |
Moore J, Bagley S, Ireland G, et al. Three dimensional analysis of microaneurysms in the human diabetic retina [J]. J Anat, 1999, 194 (Pt 1): 89-100.
|
21. |
Couturier A, Mané V, Bonnin S, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2384-2391.DOI: 10.1097/IAE.0000000000000859.
|
22. |
Soares M, Neves C, Marques IP, et al. Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography[J]. Br J Ophthalmol, 2017, 101(1): 62-68. DOI: 10.1136/bjophthalmol-2016-309424.
|
23. |
Tokayer J, Jia Y, Dhallaa H, et al. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography [J]. Biomed Opt Express, 2013, 4(10): 1909-1924. DOI: 10.1364/BOE.4.001909.eCollection 2013.
|
24. |
Stitt AW, Gardiner TA, Archer DB. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients [J]. Br J Ophthalmol, 1995, 79(4): 362-367.
|
25. |
张惠蓉, 刘宁朴.眼底病图谱[M]. 北京: 人民卫生出版社, 2007: 157-158.Zhang HR, Liu NP. Atlas of ocular fundus diseases[M]. Beijing: People’s Medical Publishing House, 2007: 157-158.
|
26. |
Hwang TS, Jia Y, Gao SS, et al. Optical coherence tomography angiography features of diabetic retinopathy[J]. Retina, 2015, 35(11): 2371-2376.DOI: 10.1097/IAE.0000000000000716.
|
27. |
Schaal KB, Munk MR, Wyssmueller I, et al. Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging [J/OL]. Retina, 2017, 2017: E1[2017-11-10]. https://insights.ovid.com/pubmed?pmid=29135803.DOI: 10.1097/IAE.0000000000001938.[Epublishedonline ahead of print].
|
28. |
de Carlo TE, Bonini Filho MA, Baumal CR, et al. Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography [J]. Ophthalmic Surg Lasers Imaging Retina, 2016, 47(2): 115-119. DOI: 10.3928/23258160-20160126-03.
|
29. |
Suzuma K, Tsuiki E, Matsumoto M, et al. Retro-mode imaging of fibrovascular membrane in proliferative diabetic retinopathy after intravitreal bevacizumab injection[J]. Clin Ophthalmol, 2011, 5: 897-900. DOI: 10.2147/OPTH.S22843.
|
30. |
Kohno R, Hata Y, Mochizuki Y, et al. Histopathology of neovascular tissue from eyes with proliferative diabetic retinopathy after intravitreal bevacizumab injection[J]. Am J Ophthalmol, 2010, 150(2): 223-229. DOI: 10.1016/j.ajo.2010.03.016.
|
31. |
Stanga PE, Papayannis A, Tsamis E, et al. New findings in diabetic maculopathy and proliferative disease by swept-source optical coherence tomography angiography[J]. Dev Ophthalmol, 2016, 56: 113-121. DOI: 10.1159/000442802.
|