1. |
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186.DOI: 10.1016/j.preteyeres.2015.08.001.
|
2. |
Hernández C, Dal Monte M, Simó R, et al. Neuroprotection as a therapeutic target for diabetic retinopathy [J/OL]. J Diabetes Res, 2016, 2016: 9508541[2016-03-31]. http://dx.doi.org/10.1155/2016/9508541. DOI: 10.1155/2016/9508541.
|
3. |
Yu Y, Chen H, Su SB. Neuroinflammatory responses in diabetic retinopathy[J]. J Neuroinflammation, 2015, 12: 141. DOI: 10.1186/s12974-015-0368-7.
|
4. |
Abcouwer SF. Müller cell-microglia cross talk drives neuroinflammation in diabetic retinopathy[J]. Diabetes, 2017, 66(2): 261-263. DOI: 10.2337/dbi16-0047.
|
5. |
Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J]. Life Sci, 2016, 162: 54-59. DOI: 10.1016/j.lfs.2016.08.001.
|
6. |
Arroba AI, Valverde ÁM. Modulation of microglia in the retina: new insights into diabetic retinopathy[J]. Acta Diabetol, 2017, 54(6): 527-533. DOI: 10.1007/s00592-017-0984-z.
|
7. |
Chen L, Yang P, Kijlstra A.Distribution, markers, and functions of retinal microglia[J]. Ocul Immunol Inflamm, 2002, 10(1): 27-39.
|
8. |
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564. DOI: 10.2337/dc11-1909.
|
9. |
Karlstetter M, Scholz R, Rutar M, et al. Retinal microglia: just bystander or target for therapy? [J]. Prog Retin Eye Res, 2015, 45: 30-57. DOI: 10.1016/j.preteyeres.2014.11.004.
|
10. |
Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling[J]. Immunity, 2016, 44(3): 505-515. DOI: 10.1016/j.immuni.2016.02.013.
|
11. |
Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina[J]. Exp Eye Res, 2015, 136: 116-130. DOI: 10.1016/j.exer.2015.04.020.
|
12. |
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms[J]. Nat Rev Neurosci, 2007, 8(1): 57-69. DOI: 10.1038/nrn2038.
|
13. |
Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina[J]. J Neuroimmune Pharmacol, 2013, 8(1): 66-78. DOI: 10.1007/s11481-012-9347-2.
|
14. |
Jin N, Gao L, Fan X, et al. Friend or foe? Resident microglia vs bone marrow-derived microglia and their roles in the retinal degeneration[J]. Mol Neurobiol, 2017, 54(6): 4094-4112. DOI: 10.1007/s12035-016-9960-9.
|
15. |
Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease[J]. Nat Rev Immunol, 2011, 11(11): 775-787. DOI: 10.1038/nri3086.
|
16. |
Yun JH, Park SW, Kim KJ, et al. Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy[J]. J Cell Physiol, 2017, 232(5): 1123-1134. DOI: 10.1002/jcp.25575.
|
17. |
Ding X, Zhang M, Gu R, et al. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes[J]. Graefe’s Arch Clin Exp Ophthalmol, 2017, 255(4): 777-788. DOI: 10.1007/s00417-016-3578-5.
|
18. |
Arroba AI, Alcalde-Estevez E, García-Ramírez M, et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice[J]. Biochim Biophys Acta, 2016, 1862(9): 1663-1674. DOI: 10.1016/j.bbadis.2016.05.024.
|
19. |
Grigsby JG, Cardona SM, Pouw CE, et al. The role of microglia in diabetic retinopathy [J/OL]. J Ophthalmol, 2014, 2014: 705783[2014-08-31]. http://dx.doi.org/10.1155/2014/705783. DOI: 10.1155/2014/705783.
|
20. |
Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2000, 41(7): 1971-1980.
|
21. |
Zeng XX, Ng YK, Ling EA. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats[J]. Vis Neurosci, 2000, 17(3): 463-471.
|
22. |
Omri S, Behar-Cohen F, de Kozak Y, et al. Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCzeta in the Goto Kakizaki rat model[J]. Am J Pathol, 2011, 179(2): 942-953. DOI: 10.1016/j.ajpath.2011.04.018.
|
23. |
Chen X, Zhou H, Gong Y, et al.Early spatiotemporal characterization of microglial activation in the retinas of rats with streptozotocin-induced diabetes[J]. Graefe’s Arch Clin Exp Ophthalmol, 2015, 253(4): 519-525. DOI: 10.1007/s00417-014-2727-y.
|
24. |
Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy[J]. Arch Ophthalmol, 2008, 126(2): 227-232. DOI: 10.1001/archophthalmol.2007.65.
|
25. |
Vujosevic S, Bini S, Midena G, et al. Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT [J/OL]. J Diabetes Res, 2013, 2013: 491835[2013-12-09].http://dx.doi.org/10.1155/2013/491835. DOI: 10.1155/2013/491835.
|
26. |
van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2009, 50(7): 3404-3409. DOI: 10.1167/iovs.08-3143.
|
27. |
van Dijk HW, Verbraak FD, Kok PH, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes[J]. Invest Ophthalmol Vis Sci, 2010; 51(7): 3660-3665. DOI: 10.1167/iovs.09-5041.
|
28. |
van Dijk HW, Verbraak FD, Kok PH, et al. Early neurodegeneration in the retina of type 2 diabetic patients[J]. Invest Ophthalmol Vis Sci, 2012; 53(6): 2715-2719. DOI: 10.1167/iovs.11-8997.
|
29. |
Tang J, Kern TS. Inflammation in diabetic retinopathy[J]. Prog Retin Eye Res, 2011, 30(5): 343-358. DOI: 10.1016/j.preteyeres.2011.05.002.
|
30. |
Wong A, Dukic-Stefanovic S, Gasic-Milenkovic J, et al. Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia[J]. Prog Retin Eye Res, 2001, 14(12): 1961-1967.
|
31. |
Wang AL, Yu AC, He QH, et al. AGEs mediated expression and secretion of TNF alpha in rat retinal microglia[J]. Exp Eye Res, 2007, 84(5): 905-913.DOI: 10.1016/j.exer.2007.01.011.
|
32. |
Swaroop S, Sengupta N, Suryawanshi AR, et al. HSP60 plays a regulatory role in IL-1beta-induced microglial inflammation via TLR4-p38 MAPK axis[J]. J Neuroinflammation, 2016, 13: 27. DOI: 10.1186/s12974-016-0486-x.
|
33. |
Tuo J, Smith BC, Bojanowski CM, et al. The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration[J]. FASEB J, 2004, 18(11): 1297-1299. DOI: 10.1096/fj.04-1862fje.
|
34. |
Cardona SM, Mendiola AS, Yang YC, et al.Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina[J]. ASN Neuro, 2015, 7(5): 1759091415608204[2015-10-29]. http://journals.sagepub.com/doi/pdf/10.1177/1759091415608204.DOI: 10.1177/1759091415608204.
|
35. |
Mendiola AS, Garza R, Cardona SM, et al. Fractalkine signaling attenuates perivascular clustering of microglia and fibrinogen leakage during systemic inflammation in mouse models of diabetic retinopathy[J]. Front Cell Neurosci, 2016, 10: 303. DOI: 10.3389/fncel.2016.00303.
|
36. |
Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy[J]. Diabetes, 2005, 54(5): 1559-1565.
|
37. |
Glybina IV, Kennedy A, Ashton P, et al. Intravitreous delivery of the corticosteroid fluocinolone acetonide attenuates retinal degeneration in S334ter-4 rats[J]. Invest Ophthalmol Vis Sci, 2010, 51(8): 4243-4252. DOI: 10.1167/iovs.09-4492.
|
38. |
Singhal S, Lawrence JM, Salt TE, et al. Triamcinolone attenuates macrophage/microglia accumulation associated with NMDA-induced RGC death and facilitates survival of Muller stem cell grafts[J]. Exp Eye Res, 2010, 90(2): 308-315. DOI: 10.1016/j.exer.2009.11.008.
|
39. |
Shen W, Lee SR, Araujo J, et al. Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation.Glia, 2014, 62(7): 1110-1124. DOI: 10.1002/glia.22666.
|
40. |
Couturier A, Bousquet E, Zhao M, et al. Anti-vascular endothelial growth factor acts on retinal microglia/macrophage activation in a rat model of ocular inflammation[J]. Mol Vis, 2014, 20: 908-920.
|
41. |
Roche SL, Wyse-Jackson AC, Gomez-Vicente V, et al. Progesterone attenuates microglial-driven retinal degeneration and stimulates protective fractalkine-CX3CR1 signaling [J/OL]. PLoS One, 2016, 11(11): 0165197[2016-11-04]. https://doi.org/10.1371/journal.pone.0165197. DOI: 10.1371/journal.pone.0165197.
|