1. |
Wiley LA, Burnight ER, Songstad AE, et al. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases[J]. Prog Retin Eye Res, 2015, 44: 15-35. DOI: 10.1016/j.preteyeres.2014.10.002.
|
2. |
Tropepe V, Coles BLK, Chiasson BJ, et al. Retinal stem cells in the adult mammalian eye[J]. Science, 2000, 287(5460): 2032-2036.
|
3. |
Coles BL, Angenieux B, Inoue T, et al. Facile isolation and the characterization of human retinal stem cells[J]. Proc Natl Acad Sci USA, 2004, 101(44): 15772-15777. DOI: 10.1073/pnas.0401596101.
|
4. |
Klassen H, Kiilgaard JF, Zahir T, et al. Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients[J]. Stem Cells, 2007, 25(5): 1222-1230. DOI: 10.1634/stemcells.2006-0541.
|
5. |
Seiler MJ, Aramant RB, Seeliger MW, et al. Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration[J]. Vet Ophthalmol, 2009, 12(3): 158-169. DOI: 10.1111/j.1463-5224.2009.00693.x.
|
6. |
Li T, Lewallen M, Chen S, et al. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells[J]. Cell Res, 2013, 23(6): 788-802. DOI: 10.1038/cr.2013.48.
|
7. |
Radtke ND, Aramant RB, Seiler M, et al. Preliminary report: indications of improved visual function after retinal sheet transplantation in retinitis pigmentosa patients[J]. Am J Ophthalmol, 1999, 128(3): 384-387.
|
8. |
Tang Z, Zhang Y, Wang Y, et al. Progress of stem/progenitor cell-based therapy for retinal degeneration[J]. J Transl Med, 2017, 15(1): 99. DOI: 10.1186/s12967-017-1183-y.
|
9. |
Ikeda H, Osakada F, Watanabe K, et al. Generation of Rx+/Pax6+neural retinal precursors from embryonic stem cells[J]. Proc Natl Acad Sci USA, 2005, 102(32): 11331-11336. DOI: 10.1073/pnas.0500010102.
|
10. |
Lamba DA, Karl MO, Ware CB, et al. Efficient generation of retinal progenitor cells from human embryonic stem cells[J].Proc Natl Acad Sci USA, 2006, 103(34): 12769-12774. DOI: 10.1073/pnas.0601990103.
|
11. |
Osakada F, Ikeda H, Mandai M, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells[J]. Nat Biotechnol, 2008, 26(2): 215-224. DOI: 10.1038/nbt1384.
|
12. |
Amirpour N, Karamali F, Rabiee F, et al. Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by Sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits[J]. Stem Cells Dev, 2012, 21(1): 42-53. DOI: 10.1089/scd.2011.0073.
|
13. |
Garcia JM, Mendonca L, Brant R, et al. Stem cell therapy for retinal diseases[J]. World J Stem Cells, 2015, 7(1): 160-164. DOI: 10.4252/wjsc.v7.i1.160.
|
14. |
Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI: 10.1016/s0140-6736(12)60028-2.
|
15. |
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/s0140-6736(14)61376-3.
|
16. |
Song Won K, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in asian patients[J]. Stem Cell Reports, 2015, 4(5): 860-872. DOI: https://doi.org/10.1016/j.stemcr.2015.04.005.
|
17. |
Yin ZQ, Liu Y, Li S, et al. Clincal trial: subretinal transplantation of CTS hESC derived RPE in the treatment of wet age-related macular degeneration (wAMD)[J]. Invest Ophthalmol Vis Sci, 2016, 57(12): 3742.
|
18. |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. DOI: 10.1016/j.cell.2006.07.024.
|
19. |
Lamba DA, McUsic A, Hirata RK, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells[J/OL]. PLoS One, 2010, 5(1): 8763[2010-01-20]. https://doi.org/10.1371/journal.pone.0008763. DOI: 10.1371/journal.pone.0008763.
|
20. |
Chakradhar S. An eye to the future: researchers debate best path for stem cell-derived therapies[J]. Nat Med, 2016, 22(2): 116-119. DOI: 10.1038/nm0216-116.
|
21. |
Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. N Engl J Med, 2017, 376(11): 1038-1046. DOI: 10.1056/NEJMoa1608368.
|
22. |
Sugita S, Iwasaki Y, Makabe K, et al. Successful transplantation of retinal pigment epithelial cells from mhc homozygote iPSCs in MHC-matched models[J]. Stem Cell Reports, 2016, 7(4): 635-648. DOI: 10.1016/j.stemcr.2016.08.010.
|
23. |
Chung J, Park T, Ohn Y, et al. Modulation of retinal wound healing by systemically administered bone marrow-derived mesenchymal stem cells[J]. Korean J Ophthalmol, 2011, 25(4): 268-274. DOI: 10.3341/kjo.2011.25.4.268.
|
24. |
Tomita M, Mori T, Maruyama K, et al. A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells[J]. Stem Cells, 2006, 24(10): 2270-2278. DOI: 10.1634/stemcells.2005-0507.
|
25. |
Mead B, Logan A, Berry M, et al. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair[J]. Stem Cells, 2017, 35(1): 61-67. DOI: 10.1002/stem.2398.
|
26. |
Mead B, Logan A, Berry M, et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7544-7556. DOI: 10.1167/iovs.13-13045.
|
27. |
Bray AF, Cevallos RR, Gazarian K, et al. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin[J]. Neuroscience, 2014, 280: 142-155. DOI: 10.1016/j.neuroscience.2014.09.023.
|
28. |
Rahimzadeh A, Mirakabad FS, Movassaghpour A, et al. Biotechnological and biomedical applications of mesenchymal stem cells as a therapeutic system[J]. Artif Cells Nanomed Biotechnol, 2016, 44(2): 559-570. DOI: 10.3109/21691401.2014.968823.
|
29. |
Amirpour N, Amirizade S, Hashemibeni B, et al. Differentiation of eye field neuroectoderm from human adipose-derived stem cells by using small-molecules and hADSC-conditioned medium[J]. Ann Anat, 2018, 221: 17-26. DOI: 10.1016/j.aanat.2018.08.002.
|
30. |
Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous "stem cells" for AMD[J]. N Engl J Med, 2017, 376(11): 1047-1053. DOI: 10.1056/NEJMoa1609583.
|
31. |
Higuchi A, Kumar SS, Benelli G, et al. Stem cell therapies for reversing vision loss[J]. Trends Biotechnol, 2017, 35(11): 1102-1117. DOI: 10.1016/j.tibtech.2017.06.016.
|
32. |
Fukuda S, Nagano M, Yamashita T, et al. Functional endothelial progenitor cells selectively recruit neurovascular protective monocyte-derived F4/80(+)/Ly6c(+) macrophages in a mouse model of retinal degeneration[J]. Stem Cells, 2013, 31(10): 2149-2161. DOI: 10.1002/stem.1469.
|
33. |
Park S, Bauer G, Abedi M, et al. Intravitreal autologous bone marrow CD34+cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings[J]. Invest Ophthalmol Vis Sci, 2014, 56(1): 81-89. DOI: 10.1167/iovs.14-15415.
|
34. |
Otteson DC. Talkin’about my (re)generation: The who of intrinsic retinal stem cells[J]. Neuroscience, 2017, 346: 447-449. DOI: https://doi.org/10.1016/j.neuroscience.2017.01.022.
|
35. |
Weinberger L, Ayyash M, Novershtern N, et al. Dynamic stem cell states: naive to primed pluripotency in rodents and humans[J]. Nat Rev Mol Cell Biol, 2016, 17(3): 155-169. DOI: 10.1038/nrm.2015.28.
|
36. |
Santos-Ferreira T, Llonch S, Borsch O, et al. Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange[J]. Nat Commun, 2016, 7: 13028. DOI: 10.1038/ncomms13028.
|
37. |
Lillien L. Changes in retinal cell fate induced by overexpression of EGF receptor[J]. Nature, 1995, 377(6545): 158-162. DOI: 10.1038/377158a0.
|
38. |
Kim J, Wu HH, Lander AD, et al. GDF11 controls the timing of progenitor cell competence in developing retina[J]. Science, 2005, 308(5730): 1927-1930. DOI: 10.1126/science.1110175.
|
39. |
Rosenthal R, Wohlleben H, Malek G, et al. Insulin-like growth factor-1 contributes to neovascularization in age-related macular degeneration[J]. Biochem Biophys Res Commun, 2004, 323(4): 1203-1208. DOI: 10.1016/j.bbrc.2004.08.219.
|
40. |
Xu Y, Balasubramaniam B, Copland DA, et al. Activated adult microglia influence retinal progenitor cell proliferation and differentiation toward recoverin-expressing neuron-like cells in a co-culture model[J]. Graefe’s Arch Clin Exp Ophthalmol, 2015, 253(7): 1085-1096. DOI: 10.1007/s00417-015-2961-y.
|
41. |
Quadrato G, Nguyen T, Macosko EZ, et al. Cell diversity and network dynamics in photosensitive human brain organoids[J]. Nature, 2017, 545(7652): 48-53. DOI: 10.1038/nature22047.
|
42. |
Park SS, Moisseiev E, Bauer G, et al. Advances in bone marrow stem cell therapy for retinal dysfunction[J]. Prog Retin Eye Res, 2017, 56: 148-165. DOI: 10.1016/j.preteyeres.2016.10.002.
|
43. |
Hu Y, Luo M, Ni N, et al. Reciprocal actions of microRNA-9 and TLX in the proliferation and differentiation of retinal progenitor cells[J]. Stem Cells Dev, 2014, 23(22): 2771-2781. DOI: 10.1089/scd.2014.0021.
|
44. |
Ni N, Zhang D, Xie Q, et al. Effects of let-7b and TLX on the proliferation and differentiation of retinal progenitor cells in vitro[J]. Sci Rep, 2014, 4: 6671. DOI: 10.1038/srep06671.
|
45. |
Zhang Y, Yue K, Aleman J, et al. 3D Bioprinting for Tissue and Organ Fabrication[J]. Ann Biomed Eng, 2017, 45(1): 148-163.
|
46. |
Melton C, Judson RL, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells[J]. Nature, 2010, 463(7281): 621-626. DOI: 10.1038/nature08725.
|
47. |
Banin E, Obolensky A, Idelson M, et al. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells[J]. Stem Cells, 2006, 24(2): 246-257. DOI: 10.1634/stemcells.2005-0009.
|
48. |
Singh D, Wang SB, Xia T, et al. A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells[J]. Biomaterials, 2018, 154: 158-168. DOI: 10.1016/j.biomaterials.2017.10.052.
|
49. |
Worthington KS, Wiley LA, Kaalberg EE, et al. Two-photon polymerization for production of human iPSC-derived retinal cell grafts[J]. Acta Biomater, 2017, 55: 385-395. DOI: 10.1016/j.actbio.2017.03.039.
|
50. |
Li K, Zhong X, Yang S, et al. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold[J]. Acta Biomater, 2017, 54: 117-127. DOI: 10.1016/j.actbio.2017.02.032.
|