1. |
Morgan CM, Schatz H. Atrophic creep of the retinal pigment epithelium after focal macular photocoagulation[J]. Ophthalmology, 1989, 96(1): 96-103. DOI: 10.1016/S0161-6420(89)32924-1.
|
2. |
Mcdonald HR, Schatz H. Visual loss following panretinal photocoagulation for proliferative diabetic retinopathy[J]. Ophthalmology, 1985, 92(3): 388-393. DOI: 10.1016/S0161-6420(85)34016-2.
|
3. |
Pankratov MM. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation[J]. Proc Soc Photo Opt Instrum Eng, 1990, 1202: 205-213.
|
4. |
Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase Ⅲ randomized trials: RISE and RIDE[J]. Ophthalmology, 2012, 119(4): 789-801. DOI: 10.1016/j.ophtha.2011.12.039.
|
5. |
Kwon YH, Lee DK, Kwon OW. The Short-term efficacy of subthreshold Micropulse yellow (577-nm) laser photocoagulation for diabetic macular edema[J]. Korean J Ophthalmol, 2014, 28(5): 379-385. DOI: 10.3341/kjo.2014.28.5.379.
|
6. |
Mori K, Duh E, Gehlbach P, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization[J]. J Cell Physiol, 2001, 188(2): 253-263. DOI: 10.1002/jcp.1114.
|
7. |
Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells[J/OL].J Ophthalmol, 2015, 2015: 729792[2015-11-30]. http://dx.doi.org/10.1155/2015/729792. DOI: 10.1155/2015/729792.
|
8. |
Wang J, Quan Y, Dalal R, et al. Comparison of continuous-wave and micropulse modulation in retinal laser therapy[J]. Invest Ophthalmol Vis Sci, 2017, 58(11): 4722-4732. DOI: 10.1167/iovs.17-21610.
|
9. |
Yu DY, Cringle SJ, Su E, et al. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits[J]. Invest Ophthalmol Vis Sci, 2005, 46(3): 988-999. DOI: 10.1167/iovs.04-0767.
|
10. |
Li Z, Song Y, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. DOI: 10.1007/s12013-015-0675-8.
|
11. |
Friberg TR, Karatza EC. The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser[J]. Ophthalmology, 1997, 104(12): 2030-2038. DOI: 10.1016/S0161-6420(97)30061-X.
|
12. |
Ohkoshi K, Tsuiki E, Kitaoka T, et al. Visualization of subthreshold micropulse diode laser photocoagulation by scanning laser ophthalmoscopy in the retro mode[J]. Am J Ophthalmol, 2010, 150(6): 856-862. DOI: 10.1016/j.ajo.2010.06.022.
|
13. |
Desmettre TJ, Mordon SR, Buzawa DM, et al. Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters[J]. Br J Ophthalmol, 2006, 90(6): 709-712. DOI: 10.1136/bjo.2005.086942.
|
14. |
Luttrull JK, Sramek C, Palanker D, et al. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema[J]. Retina, 2012, 32(2): 375-386. DOI: 10.1097/IAE.0b013e3182206f6c.
|
15. |
Laursen ML, Moeller F, Sander B, et al. Subthreshold micropulse diode laser treatment in diabetic macular oedema[J]. Br J Ophthalmol, 2004, 88(9): 1173-1179. DOI: 10.1136/bjo.2003.040949.
|
16. |
Lavinsky D, Cardillo JA, Melo LA Jr, et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4314-4323. DOI: 10.1167/iovs.10-6828.
|
17. |
Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing subthreshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema[J]. Br J Ophthalmol, 2009, 93(10): 1341-1344. DOI: 10.1136/bjo.2008.146712.
|
18. |
Fazel F, Bagheri M, Golabchi K, et al. Comparison of subthreshold diode laser micropulse therapy versus conventional photocoagulation laser therapy as primary treatment of diabetic macular edema[J]. J Curr Ophthalmol, 2016, 28(4): 206-211. DOI: 10.1016/j.joco.2016.08.007.
|
19. |
Venkatesh P, Ramanjulu R, Azad R, et al. Subthreshold micropulse diode laser and double frequency neodymium: YAG laser in treatment of diabetic macular edema: a prospective, randomized study using multifocal electroretinography[J]. Photomed Laser Surg, 2011, 29(11): 727-733. DOI: 10.1089/pho.2010.2830.
|
20. |
Vujosevic S, Martini F, Longhin E, et al. Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety[J]. Retina, 2015, 35(8): 1594-1603. DOI: 10.1097/IAE.0000000000000521.
|
21. |
Inagaki K, Ohkoshi K, Ohde S, et al. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561-577-nm) direct photocoagulation for diabetic macular edema[J]. Jpn J Ophthalmol, 2015, 59(1): 21-28. DOI: 10.1007/s10384-014-0361-1.
|
22. |
Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema[J]. Eur J Ophthalmol, 2018, 28(1): 68-73. DOI: 10.5301/ejo.5001000.
|
23. |
Mansouri A, Sampat KM, Malik KJ, et al. Efficacy of subthreshold micropulse laser in the treatment of diabetic macular edema is influenced by pre-treatment central foveal thickness[J]. Eye (Lond), 2014, 28(12): 1418-1424. DOI: 10.1038/eye.2014.264.
|
24. |
Citirik M. The impact of central foveal thickness on the efficacy of subthreshold micropulse yellow laser photocoagulation in diabetic macular edema[J/OL]. Lasers Med Sci, 2018, 2018: E1[2018-10-27]. DOI: 10.1007/s10103-018-2672-9. [published online ahead of print].
|
25. |
Vujosevic S, Martini F, Convento E, et al. Subthreshold laser therapy for diabetic macular edema: metabolic and safety issues[J]. Curr Med Chem, 2013, 20(26): 3267-3271. DOI: 10.2174/09298673113209990030.
|
26. |
Elhamid AHA. Combined intravitreal dexamethasone implant and micropulse yellow laser for treatment of anti-VEGF resistant diabetic macular edema[J]. Open Ophthalmol J, 2017, 11: 164-172. DOI: 10.2174/1874364101711010164.
|
27. |
Parodi MB, Spasse S, Iacono P, et al. Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared (810 nanometer) diode laser[J]. Ophthalmology, 2006, 113(12): 2237-2242. DOI: 10.1016/j.ophtha.2006.05.056.
|
28. |
Parodi MB, Iacono P, Ravalico G. Intravitreal triamcinolone acetonide combined with subthreshold grid laser treatment for macular oedema in branch retinal vein occlusion: a pilot study[J]. Br J Ophthalmol, 2008, 92(8): 1046-1050. DOI: 10.1136/bjo.2007.128025.
|
29. |
Inagaki K, Ohkoshi K, Ohde S, et al. Subthreshold micropulse photocoagulation for persistent macular edema secondary to branch retinal vein occlusion including best-corrected visual acuity greater than 20/40[J/OL]. J Ophthalmol, 2014, 2014: 251257[2014-09-04]. http://dx.doi.org/10.1155/2014/251257. DOI: 10.1155/2014/251257.
|
30. |
Parodi MB, Iacono P, Bandello F. Subthreshold grid laser versus intravitreal bevacizumab as second-line therapy for macular edema in branch retinal vein occlusion recurring after conventional grid laser treatment[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(10): 1647-1651. DOI: 10.1007/s00417-014-2845-6.
|
31. |
Hayreh SS, Zimmerman MB. Branch retinal vein occlusion: natural history of visual outcome[J]. JAMA Ophthalmol, 2014, 132(1): 13-22. DOI: 10.1001/jamaophthalmol.2013.5515.
|
32. |
Breukink MB, Downes SM, Querques G, et al. Comparing half-dose photodynamic therapy with high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy (the PLACE trial): study protocol for a randomized controlled trial[J]. Trials, 2015, 16: 419. DOI: 10.1186/s13063-015-0939-z.
|
33. |
Koss MJ, Beger I, Koch FH. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy[J]. Eye (Lond), 2012, 26(2): 307-314. DOI: 10.1038/eye.2011.282.
|
34. |
Roisman L, Magalhaes FP, Lavinsky D, et al. Micropulse diode laser treatment for chronic central serous chorioretinopathy: a randomized pilot trial[J]. Ophthalmic Surg Lasers Imaging Retina, 2013, 44(5): 465-470. DOI: 10.3928/23258160-20130909-08.
|
35. |
Chen SN, Hwang JF, Tseng LF, et al. Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage[J]. Ophthalmology, 2008, 115(12): 2229-2234. DOI: 10.1016/j.ophtha.2008.08.026.
|
36. |
Ricci F, Missiroli F, Regine F, et al. Indocyanine green enhanced subthreshold diode-laser micropulse photocoagulation treatment of chronic central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2009, 247(5): 597-607. DOI: 10.1007/s00417-008-1014-1.
|
37. |
Malik KJ, Sampat KM, Mansouri A, et al. Low-intensity/high-density subthreshold microPulse diode laser for chronic central serous chorioretinopathy[J]. Retina, 2015, 35(3): 532-536. DOI: 10.1097/IAE.0000000000000285.
|
38. |
Rodanant N, Friberg TR, Cheng L, et al. Predictors of drusen reduction after subthreshold infrared (810 nm) diode laser macular grid photocoagulation for nonexudative age-related macular degeneration[J]. Am J Ophthalmol, 2002, 134(4): 577-585. DOI: 10.1016/S0002-9394(02)01691-4.
|
39. |
Friberg TR, Musch DC, Lim JI, et al. Prophylactic treatment of age-related macular degeneration report number 1: 810-nanometer laser to eyes with drusen. Unilaterally eligible patients[J]. Ophthalmology, 2006, 113(4): 621-622. DOI: 10.1016/j.ophtha.2005.10.066.
|
40. |
Luttrull JK, Chang DB, Margolis BW, et al. Laser resensitization of medically unresponsive neovascular age-related macular degeneration: efficacy and implications[J]. Retina, 2015, 35(6): 1184-1194. DOI: 10.1097/IAE.0000000000000458.
|
41. |
Johnson TM, Glaser BM. Micropulse laser treatment of retinal-choroidal anastomoses in age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2005, 243(6): 570-575. DOI: 10.1007/s00417-004-1082-9.
|
42. |
Park H. Subthreshold micropulse yellow laser (577 nm) photocoagulation for subfoveal serous pigment epithelium detachment[J]. Acta Ophthalmol, 2015, 93 Suppl 1: S255. DOI: 10.1111/j.1755-3768.2015.0302.
|
43. |
Luttrull JK, Musch DC, Spink CA. Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy[J]. Eye (Lond), 2008, 22(5): 607-612. DOI: 10.1038/eye.2008.416.
|
44. |
Luttrull JK. Improved retinal and visual function following panmacular subthreshold diode micropulse laser for retinitis pigmentosa[J]. Eye (Lond), 2018, 32(6): 1099-1110. DOI: 10.1038/s41433-018-0017-3.
|
45. |
Valdés-Lara CA, Crim N, García-Aguirre G, et al. Micropulse laser for persistent optic disc pit maculopathy: a case report[J]. Am J Ophthalmol Case Rep, 2018, 10: 282-284. DOI: 10.1016/j.ajoc.2018.04.002.
|
46. |
Lavinsky D, Sramek C, Wang J, et al. Subvisible retinal laser therapy: titration algorithm and tissue response[J]. Retina, 2014, 34(1): 87-97. DOI: 10.1097/IAE.0b013e3182993edc.
|
47. |
Yu AK, Merrill KD, Truong SN, et al. The comparative histologic effects of subthreshold 532- and 810-nm diode micropulse laser on the retina[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 2216-2224. DOI: 10.1167/iovs.12-11382.
|
48. |
Luttrull JK, Sinclair SH. Safety of transfoveal subthreshold diode micropulse laser for fovea-involving diabetic macular edema in eyes with good visual acuity[J]. Retina, 2014, 34(10): 2010-2020. DOI: 10.1097/IAE.0000000000000177.
|
49. |
Kernt M, Cheuteu RE, Cserhati S, et al. Pain and accuracy of focal laser treatment for diabetic mac- ular edema using a retinal navigated laser (Navilas)[J]. Clin Ophthalmol, 2012, 6: 289-296. DOI: 10.2147/OPTH.S27859.
|
50. |
Liegl R, Langer J, Seidensticker F, et al. Comparative evaluation of combined navigated laser photocoagulation and intravitreal ranibizumab in the treatment of diabetic macular edema[J/OL]. PLoS One, 2014, 9(12): 113981[2014-12-26]. https://doi.org/10.1371/journal.pone.0113981. DOI: 10.1371/journal.pone.0113981.
|
51. |
Barteselli G, Kozak I, El-Emam S, et al. 12-month results of the standardised combination therapy for diabetic macular oedema: intravitreal bevacizumab and navigated retinal photocoagulation[J]. Br J Ophthalmol, 2014, 98(8): 1036-1041. DOI: 10.1136/bjophthalmol-2013-304488.
|
52. |
Yazdani SO, Golestaneh AF, Shafiee A, et al. Effects of low level laser therapy on proliferation and neurotrophic factor gene expression of human schwann cells in vitro[J]. J Photochem Photobiol B, 2012, 107: 9-13. DOI: 10.1016/j.jphotobiol.2011.11.001.
|
53. |
Salem W, Fraser-Bell S, Gillies M. Clinical development of new treatments for diabetic macular oedema[J]. Clin Exp Optom, 2012, 95(3): 297-305. DOI: 10.1111/j.1444-0938.2012.00723.x.
|