1. |
BOHR N. On the decrease of velocity of swiftly moving electrified particles in passing through matter[J]. Philosophical Magazine Series 6, 1915, 30(178):581-612.
|
2. |
BETHE H, HEITLER W. On the stopping of fast particles and on the creation of positive electrons[J]. Proceedings of the Royal Society of London a, 1934, 146(856):83-112.
|
3. |
FANO U. Atomic theory of electromagnetic interactions in dense materials[J]. Phys Rev, 1956, 103(5):1202-1218.
|
4. |
ERIKSSON D, STIGBRAND T. Radiation-induced cell death mechanisms[J]. Tumour Biol, 2010, 31(4):363-372.
|
5. |
RITTER S, DURANTE M. Heavy-ion induced chromosomal aberrations:A review[J]. Mutat Res, 2010, 701(1):38-46.
|
6. |
SCHMID T E, DOLLINGER G, HABLE V, et al. Relative biological effectiveness of pulsed and continuous 20 MeV protons for micronucleus induction in 3D human reconstructed skin tissue[J]. Radiother Oncol, 2010, 95(1):66-72.
|
7. |
SHEN Z Y. Genomic instability and cancer:an introduction[J]. J Mol Cell Biol, 2011, 3(1):1-3.
|
8. |
LORD C J, ASHWORTH A. The DNA damage response and cancer therapy[J]. Nature, 2012, 481(7381):287-294.
|
9. |
(苏)依万诺夫B И.,雷佐夫B H.微剂量学基础[M].华明川译,北京:原子能出版社,1987.
|
10. |
张文仲,郭勇.微剂量学的发展及其应用[J].辐射防护,2004,24(6):388-398.
|
11. |
LIAMSUWAN T, EMFIETZOGLOU D, UEHARA S, et al. Microdosimetry of low-energy electrons[J]. Int J Radiat Biol, 2012, 88(12):899-907.
|
12. |
NETTELBECK H, RABUS H. Nanodosimetry:the missing link between radiobiology and radiation physics?[J]. Radiat Meas, 2011, 46(9):893-897.
|
13. |
International Commission on Radiation Units and Measurements. Fundamental quantities and units for ionizing radiation:ICRU Report 60[R]. Bethesda, MD,USA:ICRU, 1998.
|
14. |
NIKJOO H, LINDBORG L. RBE of low energy electrons and photons[J]. Phys Med Biol, 2010, 55(10):R65-109.
|
15. |
LINDBORG L, NIKJOO H. Microdosimetry and radiation quality determinations in radiation protection and radiation therapy[J]. Radiat Prot Dosimetry, 2011, 143(2-4):402-408.
|
16. |
FRIEDRICH T, SCHOLZ U, ELS? SSER T, et al. Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern[J]. Int J Radiat Biol, 2012, 88(1-2):103-107.
|
17. |
LUKAS J, LUKAS C, BARTEK J. More than just a focus:the chromatin response to DNA damage and its role in genome integrity maintenance[J]. Nat Cell Biol, 2011, 13(10):1161-1169.
|
18. |
JEGGO P. The role of the DNA damage response mechanisms after low-dose radiation exposure and a consideration of potentially sensitive individuals[J]. Radiat Res, 2010, 174(6):825-832.
|
19. |
XU Y, PRICE B D. Chromatin dynamics and the repair of DNA double strand breaks[J]. Cell Cycle, 2011, 10(2):261-267.
|
20. |
ASAITHAMBY A, HU B R, CHEN D J. Unrepaired clustered DNA lesions induce chromosome breakage in human cells[J]. Proc Natl Acad Sci U S A, 2011, 108(20):8293-8298.
|
21. |
OKAMOTO H, KANAI T, KASE Y, et al. Relation between lineal energy distribution and relative biological effectiveness for photon beams according to the microdosimetric kinetic model[J]. J Radiat Res (Tokyo), 2011, 52(1):75-81.
|
22. |
International Commission on Radiological Protection. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR), ICRP Publication 92[R], Ann ICRP 33(4), 2003.
|
23. |
CHEN J. Microdosimetric characteristics of proton beams from 50 keV to 200 MeV[J]. Radiat Prot Dosimetry, 2011, 143(2-4):436-439.
|
24. |
BRENNER D J, WARD J F. Constraints on energy deposition and target size of multiply damaged sites associated with DNA double-strand breaks[J]. Int J Radiat Biol, 1992, 61(6):737-748.
|
25. |
GOODHEAD D T. Initial events in the cellular effects of ionizing radiations:clustered damage in DNA[J]. Int J Radiat Biol, 1994, 65(1):7-17.
|
26. |
GARTY G, SCHULTE R, SHCHEMELININ S, et al. A nanodosimetric model of radiation-induced clustered DNA damage yields[J]. Phys Med Biol, 2010, 55(3):761-781.
|
27. |
AGOSTEO S, POLA A. Silicon microdosimetry[J]. Radiat Prot Dosimetry, 2011, 143(2-4):409-415.
|
28. |
BÖHLEN T T, DOSANJH M, FERRARI A, et al. Simulations of microdosimetric quantities with the Monte Carlo code FLUKA for carbon ions at therapeutic energies[J]. Int J Radiat Biol, 2012, 88(1-2):176-182.
|
29. |
FUSS M C, SANZ A G, MU? OZ A, et al. Current prospects on Low Energy Particle Track Simulation for biomedical applications[J]. Appl Radiat Isot, 2013, 83(B):159-164.
|
30. |
LAZARAKIS P, BUG M U, GARGIONI E, et al. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra[J]. Phys Med Biol, 2012, 57(5):1231-1250.
|
31. |
IVANCHENKO N V, INCERTI S, FRANCIS Z, et al. Combination of electromagnetic physics processes for microdosimetry in liquid water with the Geant4 Monte Carlo simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2012, 273:95-97.
|
32. |
KUNCIC Z, BYRNE H L, MCNAMARA A L, et al. In silico nanodosimetry:new insights into nontargeted biological responses to radiation[J]. Comput Math Methods Med, 2012, 2012:147252.
|
33. |
INCERTI S, IVANCHENKO A, KARAMITROS M, et al. Comparison of GEANT4 very low energy cross section models with experimental data in water[J]. Med Phys, 2010, 37(9):4692-4708.
|
34. |
SATO T, WATANABE R, KASE Y, et al. Analysis of cell-survival fractions for heavy-ion irradiations based on microdosimetric kinetic model implemented in the particle and heavy ion transport code system[J]. Radiat Prot Dosimetry, 2011, 143(2-4):491-496.
|
35. |
NEWHAUSER W D, DURANTE M. Assessing the risk of second malignancies after modern radiotherapy[J]. Nat Rev Cancer, 2011, 11(6):438-448.
|
36. |
BYRNE H L, MCNAMARA A L, DOMANOVA W, et al. Radiation damage on sub-cellular scales:beyond DNA[J]. Phys Med Biol, 2013, 58(5):1251-1267.
|
37. |
BRAHME A, LIND B K. A systems biology approach to radiation therapy optimization[J]. Radiat Environ Biophys, 2010, 49(2):111-124.
|