1. |
SILVA N C, SARMENTO B, PINTADO M.. The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology[J]. Int J Antimicrob Agents, 2013, 41(1):5-10.
|
2. |
NIU Y, WU H, LI Y, et al. AApeptides as a new class of antimicrobial agents[J]. Org Biomol Chem, 2013, 11(26):4283-4290.
|
3. |
ISAKSSON J, BRANDSDAL B O, ENGQVIST M, et al. A synthetic antimicrobial peptidomimetic (LTX 109):stereochemical impact on membrane disruption[J]. Med Chem, 2011, 54(16):5786-5795.
|
4. |
单安山, 马得莹, 冯兴军, 等.抗菌肽的功能、研发与应用[J].中国农业科学, 2012, 45(11):2249-2259.
|
5. |
SPERSTAD S V, HAUG T, BLENCKE H M, et al. Antimicrobial peptides from Marine invertebrates:challenges and perspectives in Marine antimicrobial peptide discovery[J]. Biotechnol Adv, 2011, 29(5):519-530.
|
6. |
WIRADHARMA N, KHOE U, HAUSER CA, et al. Synthetic cationic amphiphilicαhelical peptides as antimicrobial agents[J]. Biomaterials, 2011, 32(8):2204-2212.
|
7. |
XIE Y G, LUAN C, ZHANG H W, et al. Effects of thioredoxin:SUMO and intein on soluble fusion expression of an antimicrobial peptide OG2 in Escherichia coli[J]. Protein Pept Lett, 2013, 20(1):54-60.
|
8. |
YANG K, SU Y, LI J, et al. Expression and purification of the antimicrobial peptide cecropin AD by fusion with cationic elastin-like polypeptides[J]. Protein Expr Purif, 2012, 85(2):200-203.
|
9. |
袁永俊, 胡婷, 朱家骅.酪蛋白抗菌肽的酶法制备[J].食品与机械, 2010, 26(2):1-4.
|
10. |
TEIXEIRA V, FEIO M J, BASTOS M. Role of lipids in the interaction of antimicrobial peptides with membranes[J]. Prog Lipid Res, 2012, 51(2):149-177.
|
11. |
VARKOUHI A K, SCHOLTE M, STORM G, et al. Endosomal escape pathways for delivery of biologicals[J]. J Control Release, 2011, 151(3):220-228.
|
12. |
SALOMONE F, CARDARELLI F, DI LUCA M, et al. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape[J]. J Control Release, 2012, 163(3):293-303.
|
13. |
SALOMONE F, CARDARELLI F, SIGNORE G, et al. In vitro efficient transfection by CM18-Tat11 hybrid peptide:a new tool for gene-delivery applications[J]. PLoS One, 2013, 8(7):e70108.
|
14. |
WIMLEY W C, HRISTOVA K. Antimicrobial peptides:successes, challenges and unanswered questions[J]. J Membr Biol, 2011, 239(1-2):27-34.
|
15. |
TRAVKOVA O G, ANDRA J, MOHWALD H, et al. Influence of arenicin on phase transitions and ordering of lipids in 2D model membranes[J]. American Chemical Society, 2013, 29(39):12203-12211.
|
16. |
MARR A K, MCGWIRE B S, MCMASTER W R. Modes of action of Leishmanicidal antimicrobial peptides[J]. Future Microbiol, 2012, 7(9):1047-1059.
|
17. |
CHO J, HWANG I S, CHOI H, et al. The novel biological action of antimicrobial peptides via apoptosis induction[J]. J Microbiol Biotechnol, 2012, 22(11):1457-1466.
|
18. |
CRUCIANI R A, BARKER J L, ZASLOFF M, et al. Antibiotic magainins exert cytolytic activity against transformed cell lines through Channel formation[J]. Proc Natl Acad Sci, 1991, 88(9):3792-3796.
|
19. |
TORRENT M, ANDREU D, NOGUÉS V M, et al. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model[J]. PLoS One, 2011, 6(2):e16968.
|
20. |
BOBEK L A, SITU H. MUC7 20-Mer:investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action[J]. Peptides, 2003, 47(2):643-652.
|
21. |
HWANG B, HWANG J S, LEE J, et al. The antimicrobial peptide, psacotheasin induces reactive Oxygen species and triggers apoptosis in Candida albicans[J]. Biochem Biophys Res Commun, 2011, 405(2):267-271.
|
22. |
尚田田, 徐彦召, 杭柏林, 等.抗菌肽的抗菌机理与构效关系研究进展[J].黑龙江畜牧兽医, 2013, 5(上):26-28.
|
23. |
URSIC-BEDOYA R, BUCHHOP J, JOY J B, et al. Prolixicin:a novel antimicrobial peptide isolated from Rhodnius prolixus with differential activity against bacteria and Trypanosoma cruzi[J]. Insect Mol Biol, 2011, 20(6):775-786.
|
24. |
LOGIN F H, BALMAND S, VALLIER A, et al. Antimicrobial peptides keep insect endosymbionts under control[J]. Science, 2011, 334(6054):362-365.
|
25. |
EPAND R F, EPAND R M, MONACO V, et al. The antimicrobial peptide trichogin and its interaction with phospholipid membranes[J]. Eur J Biochem, 1999, 266(3):1021-1028.
|
26. |
VOGEL H J, SCHIBLI D J, JING W, et al. Towards a structure-function analysis of bovine lactoferricin and related tryptophan-and arginine-containing peptides[J]. Biochem Cell Biol, 2002, 80(1):49-63.
|
27. |
HANEY E F, HUNTER H N, MATSUZAKI K, et al. Solution NMR studies of amphibian antimicrobial peptides:linking structure to function?[J]. Biochim Biophys Acta, 2009, 1788(8):1639-1655.
|
28. |
FERNANDEZ D I, SANI M A, GEHMAN J D, et al. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers[J]. Eur Biophys, 2011, 40(4):471-480.
|
29. |
STAUDEGGER E, PRENNER E J, KRIECHBAUM M, et al. X-ray studies on the interaction of the antimicrobial peptide gramicidin S with microbial lipid extracts:evidence for cubic phase formation[J]. Biochim Biophys Acta, 2000, 1468(1-2):213-230.
|
30. |
CHOI H, HWANG J S, LEE D G. Antifungal effect and pore-forming action of lactoferricin B like peptide derived from centipede Scolopendra subspinipes mutilans[J]. Biochim Biophys Acta, 2013, 1828(11):2745-2750.
|
31. |
LI L, SHI Y, CHESEREK M J, et al. Antibacterial activity and dual mechanisms of peptide analog derived from cell-penetrating peptide against Salmonella typhimurium and Streptococcus pyogenes[J]. Appl Microbiol Biotechnol, 2013, 97(4):1711-1723.
|
32. |
EVAN F H, KAMRAN N, JAN G M, et al. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin[J]. Biochim Biophys Acta, 2011, 1818(3):762-775.
|
33. |
郝刚, 乐国伟, 施用晖.抗菌肽BuforinⅡ衍生物对金黄色葡萄球菌细胞膜作用机制的研究[J].畜牧兽医学报, 2013, 44(7):1124-1130.
|