1. |
GREENLEAF J F,BAHN R C. Clinical imaging with transmissive ultrasonic Computerized tomography[J]. IEEE Transactions on Biomedical Engineering, 1981, 28(2):177-185.
|
2. |
HUTHWAITE P, SIMONETTI F, DURIC N. Combining time of flight and diffraction tomography for high resolution breast imaging:Initial in-vivo results (l)[J]. The Journal of the Acoustical Society of America, 2012, 132(3):1249-1252.
|
3. |
WATA K I, NAGATA R. Calculation of refractive index distribution from interferograms using the Born and Rytov's approximation[J]. Japanese Journal of Applied Physics, 1975, 14(1):379-384.
|
4. |
MUELLER R, KAVEH M, WADE G. Reconstructive tomography and applications to ultrasonics[J]. Proceedings of the IEEE, 1979, 67(4):567-587.
|
5. |
KAK A, SLANEY M. Principles of computerized tomographic imaging[M]. Philadelphia:Society of Industrial and Applied Mathematics, 2001:49-112.
|
6. |
SIMONETTI F, HUANG L, DURIC N. On the spatial sampling of wave fields with circular ring apertures[J]. Journal of Applied Physics, 2007, 101:083103.
|
7. |
CANDES E, ROMBERG J, TAO T. Robust uncertainty principles:Exact signalreconstruction from highly incomplete Fourier information[J]. IEEE Transactions on Information Theory, 2006,52(2):489-509.
|
8. |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
|
9. |
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2008, 58(6):1182-1195.
|
10. |
SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine and Biology, 2008, 53(17):4777-4807.
|
11. |
WU D, LI L ZHANG L. Feature constrained compressed sensing CT image reconstruction from incomplete data via robust principal component analysis of the database[J]. Physics in Medicine and Biology,2013, 58(12):4047-4070.
|
12. |
CHINN G, OLCOTT P D, LEVIN C S. Sparse signal recovery methods for multiplexing pet detector readout[J]. IEEE Transactions on Medical Imaging, 2013, 32(5):932-942.
|
13. |
ZHANG Y, WANG Y, ZHANG C. Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction[J]. Ultrasonics, 2012, 52(8):1046-1055.
|
14. |
WANG G. Guest editorial compressive sensing for biomedical imaging[J]. Magnetic Resonance in Medicine, 2011, 30(5):1013-1016.
|
15. |
ZHANG Q, LI B, SHEN M. A measurement-domain adaptive beamforming approach for ultrasound instrument based on distributed compressed sensing:Initial development[J]. Ultrasonics, 2013, 53(1):255-264.
|
16. |
吕燚,吴文焘,李平.压缩感知在合成发射孔径医学超声成中的应用[J].声学学报, 2013, 38(4):426-1432.
|
17. |
WAGNER N, ELDAR Y, FRIEDMAN Z. Compressed beamforming in ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2012, 60(9):4643-4657.
|
18. |
LIEBGOTT H, PROST R, FRIBOULET D. Pre-beamformed RF signal reconstruction in medical ultrasound using compressive sensing[J]. Ultrasonics, 2013, 53(2):525-533.
|
19. |
QUINSAC C, BASARAB A, KOUAME D. Frequency domain compressive sampling for ultrasound imaging[J]. Advances in Acoustics and Vibration, 2012, 12(6):1-16.
|
20. |
CANDES E. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9-10):589-592.
|
21. |
CANDES E, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
|
22. |
CANDES E, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
|
23. |
BRONSTEIN M M, BRONSTEIN A M, ZIBULEVSKY M, et al. Reconstruction in diffraction ultrasound tomography using non-uniform FFT[J]. IEEE Transactions on Medical Imaging, 2002, 21(11):1395-1401.
|