1. |
YOUSAF N, MONTEIRO W, MATOS S, et al. Cough frequency in health and disease[J]. Eur Respir J, 2013, 41(1):241-243.
|
2. |
BARRY S J, DANE A D, MORICE A H, et al. The automatic recognition and counting of cough[J]. Cough, 2006, 2(1):8-17.
|
3. |
SWARNKAR V, ABEYRATNE U R, AMRULLOH Y, et al. Neural network based algorithm for automatic identification of cough sounds[C]//EMBC 2013:35th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society. Osaka, Japan:2013:1764-1767.
|
4. |
MATOS S, BIRRING S S, PAVORD I D, et al. Detection of cough signals in continuous audio recordings using hidden Markov models[J]. IEEE Trans Biomed Eng, 2006, 53(6):1078-1083.
|
5. |
MATOS S, BIRRING S S, PAVORD I D, et al. An automated system for 24-h monitoring of cough frequency:the leicester cough monitor[J]. IEEE Trans Biomed Eng, 2007, 54(8):1472-1479.
|
6. |
SHIN S H, HASHIMOTO T, HATANO S. Automatic detection system for cough sounds as a symptom of abnormal health condition[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(4):486-493.
|
7. |
MARTINEK J, KLCO P, VRABEC M, et al. Cough sound analysis[J]. Acta Medica Martiniana, 2013, 13(1):15-20.
|
8. |
DRUGMAN T, URBAIN J, BAUWENS N, et al. Objective study of sensor relevance for automatic cough detection[J]. IEEE J Biomed Health Inform, 2013, 17(3):699-707.
|
9. |
BIRRING S S, FLEMING T, MATOS S, et al. The leicester cough monitor:preliminary validation of an automated cough detection system in chronic cough[J]. Eur Respir J, 2008, 31(5):1013-1018.
|
10. |
WILHELM F H, ROTH W T, SACKNER M A. The LifeShirt. An advanced system for ambulatory measurement of respiratory and cardiac function[J]. Behav Modif, 2003, 27(5):671-691.
|
11. |
HOLLIER C A, HARMER A R, MAXWELL L J, et al. Validation of respiratory inductive plethysmography (LifeShirt) in obesity hypoventilation syndrome[J]. Respir Physiol Neurobiol, 2014, 194(1):15-22.
|
12. |
SMITH J A, EARIS J E, WOODCOCK A A. Establishing a gold standard for manual cough counting:video versus digital audio recordings[J]. Cough, 2006, 2(1):6.
|
13. |
PIIRILA P, SOVIJARVI A R. Objective assessment of cough[J]. European Respiratory Journal, 1995, 8(11):1949-1956.
|
14. |
SHIELDS M D, DOHERTY G M. Chronic cough in children[J]. Paediatr Respir Rev, 2013, 14(2):100-106.
|
15. |
李文, 莫鸿强, 田联房, 等.采用MFCC和DTW的咳嗽干湿性自动分类技术[J].计算机工程与应用, 2010, 46(13):209-212.
|
16. |
SWARNKAR V, ABEYRATNE U R, CHANG A B, et al. Automatic identification of wet and dry cough in pediatric patients with respiratory diseases[J]. Ann Biomed Eng, 2013, 41(5):1016-1028.
|
17. |
CHATRZARRIN H. Feature extraction for the differentiation of dry and wet cough sounds[D]. Ottawa:Carleton University, 2011.
|
18. |
KORPÁŠ J, SADLOÑOVÁ J, VRABEC M. Analysis of the cough sound:an overview[J]. Pulm Pharmacol, 1996, 9(5-6):261-268.
|
19. |
ZHU Chunmei, TIAN Lianfang, LI Xiangyang, et al. Recognition of cough using features improved by sub-band energy transformation[C]//BMEI 2013:6th International Conference on Biomedical Engineering and Informatics. Hangzhou, China:2013:251-255.
|
20. |
PICONE J W. Signal modeling techniques in speech recognition[J]. Proceedings of the IEEE, 1993, 81(9):1215-1247.
|
21. |
CHAKROBORTY S, ROY A, MAJUMDAR S, et al. Capturing complementary information via reversed filter bank and parallel implementation with MFCC for improved text-independent speaker identification[C]//International Conference on Computing:Theory and Application, 2007. Kolkata:2007:463-467.
|
22. |
RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2):257-286.
|