We conducted this study to explore the influence of the ocular residual aberrations changes on contrast sensitivity (CS) function in eyes undergoing orthokeratology using adaptive optics technique. Nineteen subjects' nineteen eyes were included in this study. The subjects were between 12 and 20 years (14.27±2.23 years) of age. An adaptive optics (AO) system was adopted to measure and compensate the residual aberrations through a 4-mm artificial pupil, and at the same time the contrast sensitivities were measured at five spatial frequencies (2,4,8,16, and 32 cycles per degree).The CS measurements with and without AO correction were completed. The sequence of the measurements with and without AO correction was randomly arranged without informing the observers. A two-interval forced-choice procedure was used for the CS measurements. The paired t-test was used to compare the contrast sensitivity with and without AO correction at each spatial frequency. The results revealed that the AO system decreased the mean total root mean square (RMS) from 0.356 μm to 0.160 μm(t=10.517, P<0.001), and the mean total higher-order RMS from 0.246 μm to 0.095 μm(t=10.113, P<0.001). The difference in log contrast sensitivity with and without AO correction was significant only at 8 cpd (t=-2.51, P=0.02). Thereby we concluded that correcting the ocular residual aberrations using adaptive optics technique could improve the contrast sensitivity function at intermediate spatial frequency in patients undergoing orthokeratology.
Citation: GONGRui, YANGBi, LIULongqian, DAIYun, ZHANGYudong, ZHAOHaoxin. Research on Residual Aberrations Correction with Adaptive Optics Technique in Patients Undergoing Orthokeratology. Journal of Biomedical Engineering, 2016, 33(3): 533-537. doi: 10.7507/1001-5515.20160089 Copy