1. |
LYTTON W W. Computer modelling of epilepsy[J]. Nat Rev Neurosci, 2008, 9(8):626-637.
|
2. |
RUBCHINSKY L L, PARK C, WORTH R M. Intermittent neural synchronization in Parkinson's disease[J]. Nonlinear Dyn, 2012, 68(3):329-346.
|
3. |
VAN ALBADA S J, GRAY R T, DRYSDALE P M, et al. Mean-field modeling of the basal ganglia-thalamocortical system. Ⅱ Dynamics of parkinsonian oscillations[J]. J Theor Biol, 2009, 257(4):664-688.
|
4. |
BHATTACHARYA B S, COYLE D, MAGUIRE L P. A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer's disease[J]. Neural Netw, 2011, 24(6):631-645.
|
5. |
DAVID O, FRISTON K J. A neural mass model for MEG/EEG:coupling and neuronal dynamics[J]. Neuroimage, 2003, 20(3):1743-1755.
|
6. |
CHING S, BROWN E N. Modeling the dynamical effects of anesthesia on brain circuits[J]. Curr Opin Neurobiol, 2014, 25(2):116-122.
|
7. |
MAKAROV V A, PANETSOS F, DE FEO O. A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings[J]. J Neurosci Methods, 2005, 144(2):265-279.
|
8. |
DECO G, ROLLS E T, HORWITZ B. "What" and "where" in visual working memory:a computational neurodynamical perspective for integrating FMRI and single-neuron data[J]. J Cogn Neurosci, 2004, 16(4):683-701.
|
9. |
HUSAIN F T, TAGAMETS M A, FROMM S J, et al. Relating neuronal dynamics for auditory object processing to neuroimaging activity:a computational modeling and an fMRI study[J]. Neuroimage, 2004, 21(4):1701-1720.
|
10. |
FREEMAN W J. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system[J]. Biol Cybern, 1987, 56(2-3):139-150.
|
11. |
LOPES DA SILVA F H, HOEKS A, SMITS H, et al. Model of brain rhythmic activity. The alpha-rhythm of the thalamus[J]. Kybernetik, 1974, 15(1):27-37.
|
12. |
WENDLING F, BARTOLOMEI F, BELLANGER J J, et al. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition[J]. Eur J Neurosci, 2002, 15(9):1499-1508.
|
13. |
WENDLING F, BELLANGER J J, BARTOLOMEI F, et al. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals[J]. Biol Cybern, 2000, 83(4):367-378.
|
14. |
SOTERO R C, TRUJILLO-BARRETO N J. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism[J]. Neuroimage, 2008, 39(1):290-309.
|
15. |
BABAJANI-FEREMI A, SOLTANIAN-ZADEH H. Multi-area neural mass modeling of EEG and MEG signals[J]. Neuroimage, 2010, 52(3):793-811.
|
16. |
崔冬, 李小俚, 吉学青, 等.多通道神经群模型建模及分析[J].中国科学:信息科学, 2011, 41(8):978-988.
|
17. |
HASHEMI M, HUTT A, SLEIGH J. Anesthetic action on extra-synaptic receptors:effects in neural population models of EEG activity[J]. Front Syst Neurosci, 2014, 8(3):232.
|
18. |
DADOK V M, KIRSCH H E, SLEIGH J W, et al. A probabilistic framework for a physiological representation of dynamically evolving sleep state[J]. J Comput Neurosci, 2014, 37(1):105-124.
|
19. |
JANSEN B H, RIT V G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[J]. Biol Cybern, 1995, 73(4):357-366.
|
20. |
JANSEN B H, ZOURIDAKIS G, BRANDT M E. A neurophysiologically-based mathematical model of flash visual evoked potentials[J]. Biol Cybern, 1993, 68(3):275-283.
|
21. |
SOTERO R C, TRUJILLO-BARRETO N J, ITURRIA-MEDINA Y, et al. Realistically coupled neural mass models can generate EEG rhythms[J]. Neural Comput, 2007, 19(2):478-512.
|
22. |
WANG Guangyi, BAO Xulei, WANG Zhonglin. Design and FPGA implementation of a new hyperchaotic system[J]. Chin Phys B, 2008, 17(10):3596-3602.
|