1. |
ARVAND A, HORMES M, REUL H. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump[J]. Artif Organs, 2005, 29(7):531-540.
|
2. |
CHIU W C, GIRDHAR G, XENOS M, et al. Thromboresistance comparison of the HeartMate Ⅱ ventricular assist device with the device thrombogenicity emulation-optimized HeartAssist 5 VAD[J]. J Biomech Eng, 2014, 136(2):021014.
|
3. |
STOLI AN'U SKI J, ROSENBAUM C, FLAMENG W, et al. The heart-pump interaction:effects of a microaxial blood pump[J]. Int J Artif Organs, 2002, 25(11):1082-1088.
|
4. |
ARORA D, BEHR M, PASQUALI M. A tensor-based measure for estimating blood damage[J]. Artif Organs, 2004, 28(11):1002-1015.
|
5. |
YELESWARAPU K K, ANTAKI J F, KAMENEVA M V, et al. A mathematical model for shear-induced hemolysis[J]. Artif Organs, 1995, 19(7):576-582.
|
6. |
LU Qijin, HOFFERBERT B V, KOO G, et al. In vitro shear stress-induced platelet activation:sensitivity of human and bovine blood[J]. Artif Organs, 2013, 37(10):894-903.
|
7. |
LIMA B, MACK M, GONZALEZ-STAWINSKI G V. Ventricular assist devices:the future is now[J]. Trends Cardiovasc Med, 2015, 25(4):360-369.
|
8. |
APEL J, PAUL R, KLAUS S, et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics[J]. Artif Organs, 2001, 25(5):341-347.
|
9. |
YANO T, SEKINE K, MITOH A, et al. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis[J]. Artif Organs, 2003, 27(10):920-925.
|
10. |
ZHANG Yan, XUE Song, GUI Xing-min, et al. A novel integrated rotor of axial blood flow pump designed with computational fluid dynamics[J]. Artif Organs, 2007, 31(7):580-585.
|
11. |
GIERSIEPEN M, WURZINGER L J, OPITZ R, et al. Estimation of shear stress-related blood damage in heart valve prostheses——in vitro comparison of 25 aortic valves[J]. Int J Artif Organs, 1990, 13(5):300-306.
|
12. |
王芳群, 封志刚, 曾培, 等.基于CFD的离心式人工心脏泵的溶血预测方法[J].中国生物医学工程学报, 2006, 25(3):338-341, 345.
|
13. |
GRIGIONI M, MORBIDUCCI U, D'AVENIO G, et al. A novel formulation for blood trauma prediction by a modified power-law mathematical model[J]. Biomech Model Mechanobiol, 2005, 4(4):249-260.
|
14. |
SU Boyang, CHUA L P, WANG Xikun. Validation of an axial flow blood pump:computational fluid dynamics results using particle image velocimetry[J]. Artif Organs, 2012, 36(4):359-367.
|
15. |
SHERIFF J, SOARES J S, XENOS M, et al. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices[J]. Ann Biomed Eng, 2013, 41(6):1279-1296.
|
16. |
SOARES J S, SHERIFF J, BLUESTEIN D. A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories[J]. Biomech Model Mechanobiol, 2013, 12(6):1127-1141.
|
17. |
CHAN W K, WONG Y W, ONG W, et al. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump[J]. Artif Organs, 2005, 29(3):250-258.
|
18. |
SIMAAN M A, FERREIRA A, CHEN S, et al. A dynamical state space representation and performance analysis of a Feedback-Controlled rotary left ventricular assist device[J]. IEEE Transactions on Control Systems Technology, 2009, 17(1):15-28.
|