1. |
LANGER R, VACANTI J P. Tissue engineering[J]. Science, 1993, 260(5110):920-926.
|
2. |
ANDRÁE B, BÄR A, HAVERICH A, et al. Small intestinal submucosa segments as matrix for tissue engineering:review[J]. Tissue Eng Part B Rev, 2013, 19(4):279-291.
|
3. |
CARTER M J, WAYCASTER C, SCHAUM K, et al. Cost-effectiveness of three adjunct cellular/tissue-derived products used in the management of chronic venous leg ulcers[J]. Value Health, 2014, 17(8):801-813.
|
4. |
GLYNN J J, POLSIN E G, HINDS M T. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa[J]. Acta Biomater, 2015, 14(1):96-103.
|
5. |
SHIM S W, KWON D Y, LEE B N, et al. Evaluation of small intestine submucosa and poly(caprolactone-co-lactide) conduits for peripheral nerve regeneration[J]. Tissue Eng Part A, 2015, 21(5-6):1142-1151.
|
6. |
ZAFAR F, HINTON R B, MOORE R A, et al. Physiological growth, remodeling potential, and preserved function of a novel bioprosthetic tricuspid valve:tubular bioprosthesis made of small intestinal submucosa-derived extracellular matrix[J]. J Am Coll Cardiol, 2015, 66(8):877-888.
|
7. |
PADALINO M A, QUARTI A, ANGELI E, et al. Early and mid-term clinical experience with extracellular matrix scaffold for congenital cardiac and vascular reconstructive surgery:a multicentric Italian study[J]. Interact Cardiovasc Thorac Surg, 2015, 21(1):40-49.
|
8. |
ZHANG Fan, LIAO Limin. Tissue engineered cystoplasty augmentation for treatment of neurogenic bladder using small intestinal submucosa:an exploratory study[J]. J Urol, 2014, 192(2):544-550.
|
9. |
NAJI H, FOLEY J, EHREN H. Use of surgisis for abdominal wall reconstruction in children with abdominal wall defects[J]. Eur J Pediatr Surg, 2014, 24(1):94-96.
|
10. |
RAEDER R H, BADYLAK S F, SHEEHAN C, et al. Natural anti-galactose α1, 3 galactose antibodies delay, but do not prevent the acceptance of extracellular matrix xenografts[J]. Transpl Immunol, 2002, 10(1):15-24.
|
11. |
SYED O, WALTERS N J, DAY R M, et al. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering[J]. Acta Biomater, 2014, 10(12):5043-5054.
|
12. |
ROEDER R, WOLFE J, LIANAKIS N, et al. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS), small-diameter vascular grafts[J]. J Biomed Mater Res, 1999, 47(1):65-70.
|
13. |
ROPCKE D M, JENSEN M O, JENSEN H, et al. Papillary muscle force distribution after total tricuspid reconstruction using porcine extracellular matrix:in-vitro valve characterization[J]. J Heart Valve Dis, 2014, 23(6):788-794.
|
14. |
SÁNCHEZ-PALENCIA D M, D'AMORE A, GONZÁLEZ-MANCERA A, et al. Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering[J]. J Biomech, 2014, 47(11):2766-2773.
|
15. |
张承旻.小肠粘膜下层细胞相容性的研究进展[J].大家健康:下旬版, 2013, 7(4):21.
|
16. |
HODONSKY C, MUNDADA L, WANG Shuyun, et al. Effects of scaffold material used in cardiovascular surgery on mesenchymal stem cells and cardiac progenitor cells[J]. Ann Thorac Surg, 2015, 99(2):605-611.
|
17. |
房艳, 倪伟民, 单伟, 等.海绵状的小肠粘膜下层促进成骨样细胞增殖分化[J].中国生物工程杂志, 2013, 33(6):18-23.
|
18. |
BONI L, CHALAJOUR F, SASAKI T, et al. Reconstruction of pulmonary artery with porcine small intestinal submucosa in a lamb surgical model:Viability and growth potential[J]. J Thorac Cardiovasc Surg, 2012, 144(4):963-969.e1; discussion 969.
|
19. |
NAKAO M, UENO T, OGA A, et al. Proposal of intestinal tissue engineering combined with Bianchi's procedure[J]. J Pediatr Surg, 2015, 50(4):573-580.
|
20. |
CHUNG Y G, ALGARRAHI K, FRANCK D, et al. The use of bi-layer silk fibroin scaffolds and small intestinal submucosa matrices to support bladder tissue regeneration in a rat model of spinal cord injury[J]. Biomaterials, 2014, 35(26):7452-7459.
|
21. |
DING Jingxin, ZHANG Xuyin, CHEN Limei, et al. Vaginoplasty using acellular porcine small intestinal submucosa graft in two patients with Meyer-von-Rokitansky-Kuster-Hauser syndrome:a prospective new technique for vaginal reconstruction[J]. Gynecol Obstet Invest, 2013, 75(2):93-96.
|
22. |
FAN Meirong, GONG Mei, DA Lincui, et al. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers[J]. Biomed Mater, 2014, 9(1):015012.
|
23. |
ZHOU Haiyang, ZHANG Jian, YAN Ronglin, et al. Improving the antibacterial property of porcine small intestinal submucosa by nano-silver supplementation:a promising biological material to address the need for contaminated defect repair[J]. Ann Surg, 2011, 253(5):1033-1041.
|
24. |
ROSSETTO V J, DA MOTA L S, ROCHA N S, et al. Grafts of porcine small intestinal submucosa seeded with cultured homologous smooth muscle cells for bladder repair in dogs[J]. Acta Vet Scand, 2013, 55:39.
|
25. |
POGHOSYAN T, SFEIR R, MICHAUD L, et al. Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute:An experimental study in minipigs[J]. Surgery, 2015, 158(1):266-277.
|
26. |
TAN Bo, WEI Renqian, TAN Meiyun, et al. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model[J]. J Surg Res, 2013, 182(1):40-48.
|
27. |
PARK H S, JUNG S Y, KIM H Y, et al. Development of hypoparathyroidism animal model and the feasibility of small intestinal submucosa application on the parathyroid autotransplantation[J]. Eur Arch Otorhinolaryngol, 2015, 272(10):2969-2977.
|
28. |
KIM K, KIM M S. An injectable hydrogel derived from small intestine submucosa as a stem cell carrier[J]. J Biomed Mater Res B Appl Biomater, 2015:doi:10.1002/jbm.b.33504.[Epub ahead of print].
|
29. |
CHOI J W, PARK J K, CHANG J W, et al. Small intestine submucosa and mesenchymal stem cells composite gel for scarless vocal fold regeneration[J]. Biomaterials, 2014, 35(18):4911-4918.
|
30. |
CHOI J S, LEE S, KIM D Y, et al. Functional remodeling after vocal fold injury by small intestinal submucosa gel containing hepatocyte growth factor[J]. Biomaterials, 2015, 40:98-106.
|
31. |
ROW S, PENG Haofan, SCHLAICH E M, et al. Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: the role of cells in the vascular wall[J]. Biomaterials, 2015, 50:115-126.
|