1. |
STODDARD N C, CHUN J. Promising pharmacoloogical directions in the world of lysophosphatidic acid signaling[J]. Biomolecules & Therapeutics, 2015, 23(1):1-11.
|
2. |
MUELLER P, YE S J, MORRIS A, et al. Lysophospholipid mediators in the vasculature[J]. Exp Cell Res, 2015, 333(2):190-194.
|
3. |
LEBLANC R, PEYRUCHAUD O. New insights into the autotaxin/LPA axis in cancer development and metastasis[J]. Exp Cell Res, 2015, 333(2):183-189.
|
4. |
D'ARRIGO P, SCOTTI M. Lysophospholipids:synthesis and biological aspects[J]. Curr Org Chem, 2013, 17(8):812-830.
|
5. |
KANG S J, HAN J H, SONG S Y, et al. Lysophosphatidic acid increases the proliferation and migration of adipose-derived stem cells via the generation of reactive oxygen species[J]. Mol Med Rep, 2015, 12(4, A):5203-5210.
|
6. |
TSUJIUCHI T, ARAKI M, HIRANE M, et al. Lysophosphatidic acid receptors in cancer pathobiology[J]. Histol Histopathol, 2014, 29(3):313-321.
|
7. |
CHOI J W, HERR D R, NOGUCHI K, et al. LPA receptors:subtypes and biological actions[J]. Annu Rev Pharmacol Toxicol, 2010, 50(21):157-186.
|
8. |
SHENG X, YUNG Y C, CHEN A, et al. Lysophosphatidic acid signalling in development[J]. Development, 2015, 142(8):1390-1395.
|
9. |
AIKAWA S, HASHIMOTO T, KANO K, et al. Lysophosphatidic acid as a lipid mediator with multiple biological actions[J]. J Biochem, 2015, 157(7):81-89.
|
10. |
YUNG Y C, STODDARD N C, CHUN J. LPA receptor signaling:pharmacology, physiology, and pathophysiology[J]. J Lipid Res, 2014, 55(7):1192-1214.
|
11. |
WILLIER S, BUTT E, GRUNEWALD T G. Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion:A focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays[J]. Biol Cell, 2013, 105(8):317-333.
|
12. |
CHOI J W, CHUN J. Lysophospholipids and their receptors in the central nervous system[J]. Biochim Biophys Acta, 2013, 1831(1):20-32.
|
13. |
ISHII S, HIRANE M, FUKUSHIMA Kaori, et al. Diverse effects of LPA4, LPA5 and LPA6 on the activation of tumor progression in pancreatic cancer cells[J]. Biochem Biophys Res Commun, 2015, 461(1):59-64.
|
14. |
ROLIN J, MAGHAZACHI A A. Effects of lysophospholipids on tumor microenvironment[J]. Cancer Microenviron, 2011, 4(3):393-403.
|
15. |
MILLS G B, MOOLENAAR W H. The emerging role of lysophosphatidic acid in cancer[J]. Nat Rev Cancer, 2003, 3(8):582-591.
|
16. |
BRADDOCK D T. Autotaxin and lipid signaling pathways as anticancer targets[J]. Curr Opin Investig Drugs, 2010, 11(6):629-637.
|
17. |
JESIONOWSKA A, CECERSKA-HERYC E, MATOSZKA N A. Lysophosphatidic acid signaling in ovarian cancer[J]. J Recept Signal Transduct Res, 2015, 35(6):578-584.
|
18. |
KATO K, YOSHIKAWA K, TANABE E, et al. Opposite roles of LPA1 and LPA3 on cell motile and invasive activities of pancreatic cancer cells[J]. Tumour Biol, 2012, 33(5):1739-1744.
|
19. |
SOKOLOV E, EHEIM A L, AHRENS W A, et al. Lysophosphatidic acid receptor expression and function in human hepatocellular carcinoma[J]. J Surg Res, 2013, 180(1):104-113.
|
20. |
ZUCKERMAN V, SOKOLOV E, SWET J H, et al. Expression and function of lysophophatidic acid receptors 1 and 3 in human hepatic cancer progenitor cells[J]. Oncotarget, 2015, 7(3):2951-2967.
|
21. |
PARK S Y, JEONG K J, PANUPINTHU N, et al. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression[J]. Oncogene, 2011, 30(11):1351-1359.
|
22. |
DONG Yan, HIRANE M, ARAKI M, et al. Lysophosphatidic acid receptor-5 negatively regulates cell motile and invasive activities of human sarcoma cell lines[J]. Mol Cell Biochem, 2014, 393(1/2):17-22.
|
23. |
YAP L F, VELAPASAMY S, LEE H M, et al. Down-regulation of LPA receptor 5 contributes to aberrant LPA signalling in EBV-associated nasopharyngeal carcinoma[J]. J Pathol, 2015, 235(3):456-465.
|
24. |
LEE Z, CHENG C T, ZHANG H, et al. Role of LPA4/p2y9/GPR23 in negative regulation of cell motility[J]. Mol Biol Cell, 2008, 19(12):5435-5445.
|
25. |
RYU J M, HAN H J. Autotaxin-LPA axis regulates hMSC migration by adherent junction disruption and cytoskeletal rearrangement via LPAR1/3-dependent PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways[J]. Stem Cells, 2015, 33(3):819-832.
|
26. |
ESTIBALIZ G D, IVAN M, MARIA T, et al. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain[J]. J Neurochem, 2015, 134(11):471-485.
|
27. |
BLACKBURN J, MANSELL J P. The emerging role of lysophosphatidic acid (LPA) in skeletal biology[J]. Bone, 2012, 50(3):756-762.
|
28. |
PEBAY A, BONDER C S, PITSON S M. Stem cell regulation by lysophospholipids[J]. Prostaglandins Other Lipid Mediat, 2007, 84(3/4):83-97.
|
29. |
VÁZQUEZ-VICTORIO G, GONZÁLEZ-ESPINOSA C, ESPINOSA-RIQUER Z P, et al. GPCRs and actin-cytoskeleton dynamics[J]. Methods Cell Biol, 2016, 132(9):165-188.
|
30. |
DEVREOTES P, HORWITZ A R. Signaling networks that regulate cell migration[J]. Cold Spring Harb Perspect Biol, 2015, 7(8):a005959.
|
31. |
JEONG K J, PARK S Y, CHO K H, et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion[J]. Oncogene, 2012, 31(39):4279-4289.
|
32. |
JEONG G, SHIN S H, SEO E J, et al. TAZ mediates lysophosphatidic acid-induced migration and proliferation of epithelial ovarian cancer cells[J]. Cell Physiol Biochem, 2013, 32(2):253-263.
|
33. |
LI T T, ALEMAYEHU M, AZIZIYEH Adel-i, et al. Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells[J]. Mol Cancer Res, 2009, 7(7):1064-1077.
|
34. |
HU Hai, JUVEKAR A, LYSSIOTIS C A, et al. Phosphoinositide 3-Kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton[J]. Cell, 2016, 164(3):433-446.
|
35. |
ASRUM M, TJOMSLAND V, THORESEN G H, et al. PI3K is required for both basal and LPA-induced DNA synthesis in oral carcinoma cells[J]. J Oral Pathol Med, 2015, doi:10.1111/jop.12384.
|
36. |
JONGSMA M, MATAS-RICO E, RZADKOWSKI A, et al. LPA is a chemorepellent for B16 melanoma cells:action through the cAMP-Elevating LPA(5) receptor[J]. PLoS One, 2011, 6(12):e29260.
|
37. |
王法微, 王骐, 邓宇, 等.磷脂酶C基因家族研究进展[J].生物技术通报, 2014, 12(12):33-39.
|
38. |
PARK S J, LEE K P, IM D S. Action and signaling of lysophosphatidylethanolamine in MDA-MB-231 breast cancer cells[J]. Biomol Ther (Seoul), 2014, 22(2):129-135.
|
39. |
BRUSEVOLD I J, TVETERAAS I H, AASRUM M A, et al. Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells[J]. BMC Cancer, 2014, 14(12):1-16.
|
40. |
WAYS D K, KUKOLY C A, DEVENTE J, et al. MCF-7 breast cancer cells transfected with protein kinase C-alpha exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype[J]. J Clin Invest, 1995, 95(4):1906-1915.
|
41. |
BURDYGA A, CONANT A, HAYNES L, et al. cAMP inhibits migration, ruffling and paxillin accumulation in focal adhesions of pancreatic ductal adenocarcinoma cells:effects of PKA and EPAC[J]. Biochim Biophys Acta, 2013, 1833(12):2664-2672.
|
42. |
ZIMMERMAN N P, ROY I, HAUSER A D, et al. Cyclic AMP regulates the migration and invasion potential of human pancreatic cancer cells[J]. Mol Carcinog, 2015, 54(3):203-215.
|
43. |
WHETTON A D, LU Y, PIERCE A, et al. Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav1[J]. Blood, 2003, 102(8):2798-2802.
|