1. |
Wolff J. Das gesetz der transformation der knochen. DMW-Deutsche Medizinische Wochenschrift, 1893, 19(47): 1222-1224.
|
2. |
Ren Li, Yang Pengfei, Wang Zhe, et al. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater, 2015, 50: 104-122.
|
3. |
Fehrendt H, Linn T, Hartmann S, et al. Negative influence of a long-term high-fat diet on murine bone architecture. Int J Endocrinol, 2014, 2014: 318924.
|
4. |
Li F F, Chen F L, Wang H, et al. Proteomics based detection of differentially expressed proteins in human osteoblasts subjected to mechanical stress. Biochem Cell Biol, 2013, 91(2): 109-115.
|
5. |
Gong Xiaoyuan, Yang Weidong, Wang Liyun, et al. Prostaglandin E2 modulates F-actin stress fiber in FSS-stimulated MC3T3-E1 cells in a PKA-dependent manner. Acta Biochim Biophys Sin (Shanghai), 2014, 46(1): 40-47.
|
6. |
Cowin S C. Bone poroelasticity. J Biomech, 1999, 32(3): 217-238.
|
7. |
van der Meijden K, Bakker A D, van Essen H W, et al. Mechanical loading and the synthesis of 1, 25(OH)2D in primary human osteoblasts. J Steroid Biochem Mol Biol, 2016, 156: 32-39.
|
8. |
Pathak J L, Bravenboer N, Luyten F P, et al. Mechanical loading reduces inflammation-induced human osteocyte-to-osteoclast communication. Calcif Tissue Int, 2015, 97(2): 169-178.
|
9. |
Lee K L, Guevarra M D, Nguyen A M, et al. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia, 2015, 4: 7.
|
10. |
Roy B, Das T, Mishra D, et al. Oscillatory shear stress induced calcium flickers in osteoblast cells. Integr Biol (Camb), 2014, 6(3): 289-299.
|
11. |
Jing D, Baik A D, Lu X L, et al. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB Journal, 2014, 28(4): 1582-1592.
|
12. |
Xu Huiyun, Guan Ying, Wu Jiawei, et al. Polycystin 2 is involved in the nitric oxide production in responding to oscillating fluid shear in MLO-Y4 cells. J Biomech, 2014, 47(2): 387-391.
|
13. |
Obara C, Tomiyama K I, Takizawa K, et al. Characteristics of three-dimensional prospectively isolated mouse bone marrow mesenchymal stem/stromal cell aggregates on nanoculture plates. Cell Tissue Res, 2016, 366(1): 113-127.
|
14. |
Filipowska J, Reilly G C, Osyczka A M. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnol Bioeng, 2016, 113(8): 1814-1824.
|
15. |
Du D, Ushida T, Furukawa K S. Influence of cassette design on three-dimensional perfusion culture of artificial bone. J Biomed Mater Res B Appl Biomater, 2015, 103(1): 84-91.
|
16. |
Clarke S A, Choi S Y, Mckechnie M, et al. Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. J Mater Sci Mater Med, 2016, 27(2): 22.
|
17. |
Kim J, Bae W G, Choung H W, et al. Multiscale patterned transplantable stem cell patches for bone tissue regeneration. Biomaterials, 2014, 35(33): 9058-9067.
|
18. |
Pan C J, Qin H, Nie Y D, et al. Control of osteoblast cells adhesion and spreading by microcontact printing of extracellular matrix protein patterns. Colloids Surf B Biointerfaces, 2013, 104: 18-26.
|
19. |
Qin Y X, Hu M. Mechanotransduction in musculoskeletal tissue regeneration: effects of fluid flow, loading, and cellular-molecular pathways. Biomed Res Int, 2014, 2014: 863421.
|
20. |
Hu M, Qin Y X. Dynamic fluid flow stimulation on cortical bone and alterations of the gene expressions of osteogenic growth factors and transcription factors in a rat functional disuse model. Arch Biochem Biophys, 2014, 545: 154-161.
|
21. |
Gardinier J, Gangadharan V, Wang L, et al. Hydraulic pressure during fluid flow regulates purinergic signaling and cytoskeleton organization of osteoblasts. Cell Mol Bioeng, 2014, 7(2): 266-277.
|
22. |
Lai X, Price C, Lu X L, et al. Imaging and quantifying solute transport across periosteum: implications for muscle-bone crosstalk. Bone, 2014, 66: 82-89.
|
23. |
Ciani C, Sharma D, Doty S B, et al. Ovariectomy enhances mechanical load-induced solute transport around osteocytes in rat cancellous bone. Bone, 2014, 59: 229-234.
|
24. |
Granke M, Does M D, Nyman J S. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int, 2015, 97(3, SI): 292-307.
|
25. |
Wang L, Wang Y, Han Y, et al. In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci U S A, 2005, 102(33): 11911-11916.
|
26. |
Lai X, Price C, Modla S, et al. The dependences of osteocyte network on bone compartment, age, and disease. Bone Res, 2015, 3: 15009.
|
27. |
Cowin S C, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech, 2015, 48(5, SI): 842-854.
|
28. |
Metzger T A, Kreipke T C, Vaughan T J, et al. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng, 2015, 137(1). doi: 10.1115/1.4028985.
|
29. |
Wang L Y, Fritton S P, Cowin S C, et al. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment. J Biomech, 1999, 32(7): 663-672.
|
30. |
Benalla M, Palacio-Mancheno P E, Fritton S P, et al. Dynamic permeability of the lacunar-canalicular system in human cortical bone. Biomech Model Mechanobiol, 2014, 13(4): 801-812.
|
31. |
Zhao F, Vaughan T J, Mcnamara L M. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold. Biomech Model Mechanobiol, 2015, 14(2): 231-243.
|
32. |
Birmingham E, Grogan J A, Niebur G L, et al. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann Biomed Eng, 2013, 41(4): 814-826.
|
33. |
Fan L, Pei S, Lucas Lu X, et al. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone. Bone Res, 2016, 4: 16032.
|
34. |
Verbruggen S W, Vaughan T J, Mcnamara L M. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. Biomech Model Mechanobiol, 2014, 13(1): 85-97.
|
35. |
Vaughan T J, Mullen C A, Verbruggen S W, et al. Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia. Biomech Model Mechanobiol, 2015, 14(4): 703-718.
|