1. |
Vigneshvar S, Sudhakumari C C, Senthilkumaran B, et al. Recent advances in biosensor technology for potential applications–an overview. Front Bioeng Biotechnol, 2016, 4: 11.
|
2. |
Jung J, Kim S J, Lee K W, et al. Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors. Biosens Bioelectron, 2014, 55(15): 99-105.
|
3. |
Li Jianlin, Sailor M J. Synthesis and characterization of a stable, label-free optical biosensor from TiO<sub>2</sub>-coated porous silicon. Biosens Bioelectron, 2014, 55(9): 372-378.
|
4. |
Fathil M F M, Arshad M K M, Ruslinda A R, et al. Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin Ⅰ detection. Sensors & Actuators B: Chemical, 2016, 242: 1142-1154.
|
5. |
Ahmad R, Tripathy N, Park J H, et al. A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea. Chem Commun (Camb), 2015, 51(60): 11968-11971.
|
6. |
Li S K, Chou J C, Sun T P, et al. Study on the potentiometric glucose biosensor based on the SnO<sub>2</sub>/ITO/PET. Biomedical Engineering: Applications, Basis and Communications, 2014, 21(6): 900153.
|
7. |
Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289-1292.
|
8. |
Nuzaihan M N M, Hashim U, Arshad M K M, et al. Top-down nanofabrication and characterization of 20 nm silicon nanowires for biosensing applications. PLoS One, 2016, 11(3): e0152318.
|
9. |
Nuzaihan M N M, Hashim U, Rahim Ruslinda A, et al. Fabrication of silicon nanowires array using E-beam lithography integrated with microfluidic channel for pH sensing. Current Nanoscience, 2015, 11(2): 239-244.
|
10. |
Adam T, Hashim U. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosens Bioelectron, 2015, 67(2): 656-661.
|
11. |
Mohd Azmi M A, Tehrani Z, Lewis R P, et al. Highly sensitive covalently functionalised integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosens Bioelectron, 2014, 52(4): 216-224.
|
12. |
Kim K, Park C, Kwon D, et al. Silicon nanowire biosensors for detection of cardiac troponin Ⅰ (cTnⅠ) with high sensitivity. Biosens Bioelectron, 2016, 77: 695-701.
|
13. |
Zhou Fan, Li Zengyao, Bao Zengtao, et al. Highly sensitive, label-free and real-time detection of alpha-fetoprotein using a silicon nanowire biosensor. Scand J Clin Lab Invest, 2015, 75(7): 578-584.
|
14. |
Gao Anran, Lu Na, Dai Pengfei, et al. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale, 2014, 6(21): 13036-13042.
|
15. |
Patolsky F, Zheng Gengfeng, Lieber C M. Nanowire sensors for medicine and the life sciences. Nanomedicine, 2006, 1(1): 51-65.
|
16. |
Poghossian A, Schöning M J. Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis, 2014, 26(6): 1197-1213.
|
17. |
Zhang G J, Zhang G, Chua J H, et al. DNA sensing by silicon nanowire: charge layer distance dependence. Nano Letters, 2008, 8(4): 1066-1070.
|
18. |
Lu Na, Gao Anran, Dai Pengfei, et al. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small, 2014, 10(10): 2022-2028.
|
19. |
Patolsky F, Zheng G, Hayden O, et al. Electrical detection of single viruses. Proc Natl Acad Sci U S A, 2004, 101(39):14017-14022.
|
20. |
Kim J Y, Ahn J H, Moon D I, et al. Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor. Biosens Bioelectron, 2014, 55(15): 162-167.
|
21. |
Zhu Kuiyu, Zhang Ye, Li Zengyao, et al. Simultaneous detection of α-fetoprotein and carcinoembryonic antigen based on Si nanowire field-effect transistors. Sensors (Basel), 2015, 15(8): 19225-19236.
|
22. |
Zhang G J, Chai K T, Luo H Z, et al. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens Bioelectron, 2012, 35(1): 218-223.
|
23. |
Cheng S, Hotani K, Hideshima S, et al. Field effect transistor biosensor using antigen binding fragment for detecting tumor marker in human serum. Materials (Basel), 2014, 7(4): 2490-2500.
|
24. |
Gao Ning, Zhou Wei, Jiang Xiaocheng, et al. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett, 2015, 15(3): 2143-2148.
|
25. |
Zhou Wei, Dai Xiaochuan, Fu Tianming, et al. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett, 2014, 14(3): 1614-1619.
|
26. |
Shen M Y, Li B R, Li Y K. Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens Bioelectron, 2014, 60(1): 101-111.
|
27. |
Chen H C, Qiu J T, Yang F L, et al. Magnetic-composite-modified polycrystalline silicon nanowire field-effect transistor for vascular endothelial growth factor detection and cancer diagnosis. Anal Chem, 2014, 86(19): 9443-9450.
|
28. |
Ishikawa F N, Curreli M, Chang H K, et al. A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano, 2009, 3(12): 3969-3976.
|
29. |
Parihar M S, Kranti A. Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology, 2015, 26(14): 145201.
|
30. |
Kühlbrandt W. The resolution revolution. Science, 2014, 343(6178): 1443-1444.
|
31. |
Liu Jia, Fu Tianming, Cheng Zengguang, et al. Syringe-injectable electronics. Nat Nanotechnol, 2015, 10(7): 629-636.
|