1. |
Lang A E, Lozano A M. Parkinson's disease. New England Journal of Medicine, 1998, 37(3): 198.
|
2. |
van Den Eeden S K, Tanner C M, Bernstein A L, et al. Incidence of parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol, 2003, 157(11): 1015-1022.
|
3. |
王宗宝, 黄永志, 张新静, 等. 帕金森病患者局部场电位信号多频耦合特征分析. 生物医学工程学杂志, 2015, 32(4): 874-880.
|
4. |
O’sullivan S B, Schmitz T J. Improving functional outcomes in physical rehabilitation. 5th ed. USA: F. A. Davis Company, 2010: 856-894.
|
5. |
Baghai-Ravary L, Beet S W. Automatic speech signal analysis for clinical diagnosis and assessment of speech disorders. SpringerBriefs in Electrical and Computer Engineering, 2012, 115(2): 31-36.
|
6. |
Little M A, Mcsharry P E, Hunter E J, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Trans Biomed Eng, 2009, 56(4): 1015.
|
7. |
Tsanas A, Little M A, Mcsharry P E, et al. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans Biomed Eng, 2012, 59(5): 1264-1271.
|
8. |
Sakar B E, Isenkul M E, Sakar C O, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform, 2013, 17(4): 828-834.
|
9. |
Yair E, Gath I. High resolution Pole-Zero analysis of parkinsonian speech. IEEE Trans Biomed Eng, 1991, 38: 161-167.
|
10. |
Perez C J, Naranjo L, Martin J, et al. A latent variable-based Bayesian regression to address recording replications in Parkinson’s disease. European Signal Processing Conference, 2014: 1447-1451.
|
11. |
Hariharan M, Polat K, Sindhu R. A new hybrid intelligent system for accurate detection of Parkinson's disease. Comput Methods Programs Biomed, 2014, 113(3): 904-913.
|
12. |
Yang Shanshan, Zheng Fang, Luo Xin, et al. Effective dysphonia detection using feature dimension reduction and kernel density estimation for patients with parkinson's disease. PLoS One, 2014, 9(2): 1-10.
|
13. |
Shahbakhti M, Taherifar D, Sorouri A. Linear and Non-linear Speech Features for Detection of Parkinson's disease//The 2013 Biomedical Engineering International Conference, 2013.
|
14. |
Avci D, Dogantekin A. An expert diagnosis system for parkinson disease based on genetic Algorithm-Wavelet Kernel-Extreme learning machine. Parkinsons Dis, 2016: 1-9.
|
15. |
Galaz Z, Mekyska J, Mzourek Z, et al. Department prosodic analysis of neutral, stress-modified andrhymed speech in patients with parkinson's disease. Comput Methods Programs Biomed, 2016, 127: 301-317.
|
16. |
Hirschauer T J, Adeli H, Buford J A. Computer-Aided diagnosis of parkinson's disease using enhanced probabilistic neural network. Journal of Medical System, 2015, 39: 179.
|
17. |
Kazumune H, Shuichi A, Dimos V. Dimarogonas Self-Triggered model predictive control for nonlinear Input-Affine dynamical systems via adaptive control Samples Selection. IEEE Trans Automat Contr, 2017, 62(1): 177-189.
|
18. |
李勇明, 杨刘洋, 刘玉川, 等. 基于语音样本重复剪辑和随机森林的帕金森病诊断算法研究. 生物医学工程学杂志, 2016, 33(6): 1053-1059.
|
19. |
Kira K, Rendell L. The feature selection problem: Traditional methods and a new algorithm//Proceedings of the Ninth National conference on Artificial Intelligence, New Orleans: AAAI press, 1992: 129-134.
|
20. |
Gonen M, Alpaydin E. Multiple kernel learning algorithms. Journal of Machine Learning Research, 2011, 12: 2211-2268.
|