1. |
Karimi M, Ghasemi A, Zangabad P S, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev, 2016, 45(5): 1457-1501.
|
2. |
Kang T, Li Fangyuan, Baik S, et al. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136: 98-114.
|
3. |
Darvishi B, Farahmand L, Majidzadeh-A K. Stimuli-responsive mesoporous silica NPs as non-viral dual siRNA/chemotherapy carriers for triple negative breast cancer. Mol Ther Nucleic Acids, 2017, 7: 164-180.
|
4. |
Fouladi F, Steffen K J, Mallik S. Enzyme-responsive liposomes for the delivery of anticancer drugs. Bioconjug Chem, 2017, 28(4): 857-868.
|
5. |
Kanmani P, Rhim J W. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym, 2014, 106: 190-199.
|
6. |
Li Zhen, Li Hongmei, Liu Lixiang, et al. A pH-sensitive nanocarrier for co-delivery of doxorubicin and camptothecin to enhance chemotherapeutic efficacy and overcome multidrug resistance in vitro. RSC Adv, 2015, 5(94): 77097-77105.
|
7. |
Barick K C, Nigam S, Bahadur D. Nanoscale assembly of mesoporous ZnO: A potential drug carrier. J Mater Chem, 2010, 20(31): 6446-6452.
|
8. |
Peng Hongxia, Hu Chuanyue, Hu Jilin, et al. Fe3O4@mZnO nanoparticles as magnetic and microwave responsive drug carriers. Micropor Mesopor Mat, 2016, 226: 140-145.
|
9. |
Huang Xiao, Lu Juan, Yue Danyang, et al. Fe3O4@ZnO core-shell nanocomposites for efficient and repetitive removal of low density lipoprotein in plasma and on blood vessel. Nanotechnology, 2015, 26(12): 125101.
|
10. |
Tripathy N, Ahmad R, Ko H A, et al. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system. Nanoscale, 2015, 7(9): 4088-4096.
|
11. |
El-Mekawy R E, Jassas R S. Recent trends in smart and flexible three-dimensional cross-linked polymers: synthesis of chitosan-ZnO nanocomposite hydrogels for insulin drug delivery. MedChemComm, 2017, 8(5): 897-906.
|
12. |
Wang Yinghui, Song Shuyan, Liu Jianhua, et al. ZnO-functionalized upconverting nanotheranostic agent: Multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. Angew Chem Int Edit, 2015, 54(2): 536-540.
|
13. |
Dhivya R, Ranjani J, Rajendhran J, et al. pH responsive curcumin/ZnO nanocomposite for drug delivery. Adv Mater Lett, 2015, 6(6): 505-512.
|
14. |
Vimala K, Shanthi K, Sundarraj S, et al. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. J Colloid Interface Sci, 2017, 488: 92-108.
|
15. |
Cai Xiaoli, Luo Yanan, Yan Hongye, et al. pH-responsive ZnO nanocluster for lung cancer chemotherapy. ACS Appl Mater Interfaces, 2017, 9(7): 5739-5747.
|
16. |
Zeng Ke, Li Jin, Zhang Zhaoguo, et al. Lipid-coated ZnO nanoparticles as lymphatic-targeted drug carriers: study on cell-specific toxicity in vitro and lymphatic targeting in vivo. J Mater Chem B, 2015, 3(26): 5249-5260.
|
17. |
Cai Xiaoli, Luo Yanan, Zhang Weiying, et al. pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces, 2016, 8(34): 22442-22450.
|
18. |
Zhang Jing, Wu Dan, Li Mengfei, et al. Multifunctional mesoporous silica nanoparticles based on charge-reversal plug-gate nanovalves and acid-decomposable ZnO quantum dots for intracellular drug delivery. ACS Appl Mater Interfaces, 2015, 7(48): 26666-26673.
|
19. |
Ye Daixin, Ma Yingying, Zhao Wei, et al. ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano, 2016, 10(4): 4294-4300.
|
20. |
Huang Xuan, Wu Shanshan, Du Xuezhong. Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release. Carbon, 2016, 101: 135-142.
|
21. |
Muharnmad F, Guo Mingyi, Qi Wenxiu, et al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J Am Chem Soc, 2011, 133(23): 8778-8781.
|
22. |
Zhang Haijun, Guo Liting, Ding Shuang, et al. Targeted photo-chemo therapy of malignancy on the chest wall while cardiopulmonary avoidance based on Fe3O4@ZnO nanocomposites. Oncotarget, 2016, 7(24): 36602-36613.
|
23. |
Fini M, Tyler W J. Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. Int Rev Psychiat, 2017, 29(2): 168-177.
|
24. |
Shi Ye, Ma Chongbo, Du Yan, et al. Microwave-responsive polymeric core-shell microcarriers for high-efficiency controlled drug release. J Mater Chem B, 2017, 5(19): 3541-3549.
|
25. |
Qiu Hongjin, Cui Bin, Zhao Weiwei, et al. A novel microwave stimulus remote controlled anticancer drug release system based on Fe3O4@ZnO@mGd(2)O(3):Eu@P(NIPAm-co-MAA) multifunctional nanocarriers. J Mater Chem B, 2015, 3(34): 6919-6927.
|
26. |
Peng Hongxia, Cui Bin, Li Guangming, et al. A multifunctional β-CD-modified Fe3O4@ZnO:Er3+,Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release. Mater Sci Eng C, 2015, 46: 253-263.
|
27. |
Bagheri A, Arandiyan H, Boyer C, et al. Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. Adv Sci, 2016, 3(7): 1500437.
|
28. |
黄啸, 王文洪, 王梅, 等. 光控释负载吲哚美辛的氧化锌载药微粒的制备与性能. 精细化工, 2017, 34(1): 92-95, 108.
|
29. |
Huang Xiao, Wang Xiaoying, Wang Sichun, et al. UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection. Nanoscale, 2013, 5(12): 5596-5601.
|
30. |
黄啸, 郑曦, 易彩霞. 光响应多功能药物载体的制备及其对宫颈癌细胞的抑制作用. 材料导报, 2017, 31(10): 37-40.
|
31. |
Huang Xiao, Zheng Xi, Yi Caixia, et al. P(BA-co-HBA) coated Fe3O4@ZnO nanoparticles as photo-responsive multifunctional drug delivery systems for safer cancer therapy. Nano, 2016, 11(5): 1650057.
|
32. |
Kong Fei, Huang Xiao, Yue Danyang, et al. A biocompatible and magnetic nanocarrier with a safe UV-initiated docetaxel release and cancer secretion removal properties increases therapeutic potential for skin cancer. Mater Sci Eng C, 2017, 76: 579-585.
|
33. |
Choi S J, Choy J H. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. Int J Nanomedicine, 2014, 9(2): 261-269.
|
34. |
Saptarshi S R, Duschl A, Lopata A L. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine, 2015, 10(13): 2075-2092.
|
35. |
Ivask A, Juganson K, Bondarenko O, et al. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology, 2014, 8(S1): 57-71.
|
36. |
杨霞, 江米足. 纳米氧化锌的毒性作用及机制研究进展. 浙江大学学报:医学版, 2014, 43(2): 218-226,.
|
37. |
Ng C T, Yong L Q, Hande M P, et al. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine, 2017, 2017(12): 1621-1637.
|
38. |
Liu Jing, Zhao Yong, Ge Wei, et al. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through theγ-H2AX and NF-κB signaling pathways. Oncotarget, 2017, 8(26): 42673-42692.
|
39. |
Shalini D, Senthikumar S, Rajaquru P. Effect of size and shape on toxicity of zinc oxide (ZnO) nanomaterials in human peripheral blood lymphocytes. Toxicol Mech Methods, 2017. DOI: 10.1080/15376516.2017.1366609.
|
40. |
Xiong Huanming. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater, 2013, 25(37, SI): 5329-5335.
|
41. |
Chen Tong, Zhao Tong, Wei Dongfeng, et al. Core-shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym, 2013, 92(2): 1124-1132.
|
42. |
Rakhshaei R. Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C, 2017, 73: 456-464.
|