1. |
Coben R, Mohammad-Rezazadeh I, Cannon R L. Using quantitative and analytic EEG methods in the understanding of connectivity in autism spectrum disorders: a theory of mixed over- and under-connectivity. Front Hum Neurosci, 2014, 8(104): 45.
|
2. |
Blaxill M F. What's going on? The question of time trends in autism. Public Health Rep, 2004, 119(6): 536-551.
|
3. |
冯士刚, 唐一源. 用脑功能成像的方法研究大脑的视觉成像机制//大连理工大学生物医学工程学术论文集, 2005.
|
4. |
Braeutigam S, Swithenby S J, Bailey A J. Contextual integration the unusual way: a magnetoencephalographic study of responses to semantic violation in individuals with autism spectrum disorders. Eur J Neurosci, 2008, 27(4): 1026-1036.
|
5. |
Coben R, Clarke A R, Hudspeth W, et al. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol, 2008, 119(5): 1002-1009.
|
6. |
Bernier R, Dawson G, Webb S et al. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain & Cognition, 2007, 64(3): 228-237.
|
7. |
Léveillé C, Barbeau E B, Bolduc C et al. Enhanced connectivity between visual cortex and other regions of the brain in autism: a REM sleep EEG coherence study. Autism Res, 2010, 3(5): 280-285.
|
8. |
Bosl W, Tierney A, Tager-Flusberg H A. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med, 2011, 9(1): 18.
|
9. |
Kulisek R, Hrncir Z, Hrdlicka M, et al. Nonlinear analysis of the sleep EEG in children with pervasive developmental disorder. Neuro Endocrinol Lett, 2008, 29(4): 512-517.
|
10. |
Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol, 2010, 27(5): 328-333.
|
11. |
Catarino A, Churches O, Baron-Cohen S, et al. Atypical EEG complexity in autism spectrum conditions: a multiscale entropy analysis. Clin Neurophysiol, 2011, 122(12): 2375-2383.
|
12. |
Lippe S, Kovacevic N, Mcintosh A R. Differential maturation of brain signal complexity in the human auditory and visual system. Front Hum Neurosci, 2009, 3(4): 48.
|
13. |
Meyer-Lindenberg A. The evolution of complexity in human brain development: An EEG study. Electroencephalogr Clin Neurophysiol, 1996, 99(5): 405-411.
|
14. |
Pincus S M. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A, 1991, 88(6): 2297-2301.
|
15. |
Pincus S M. Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disord, 2006, 8(5, 1): 430-440.
|
16. |
Stam C J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin Neurophysiol, 2005, 116(10): 2266-2301.
|
17. |
Abasolo D, Hornero R, Espino P, et al. Electroencephalogram background activity characterization with approximate entropy and auto mutual information in Alzheimer's disease patients. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007: 6192-6195.
|
18. |
Bruce E N, Bruce M C, Vennelaganti S. Sample entropy tracks changes in electroencephalogram power spectrum with sleep state and aging. J Clin Neurophysiol, 2009, 26(4): 257-266.
|
19. |
Lee S H, Park H W, Kim M J, et al. External validation of pharmacokinetic and pharmacodynamics models of microemulsion and long-chain triglyceride emulsion propofol in beagle dogs. J Vet Pharmacol Ther, 2012, 35(4): 329-341.
|
20. |
Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol, 2000, 278(6): H2039-H2049.
|
21. |
Li X, Ouyang G, Richards D A. Predictability analysis of absence seizures with permutation entropy. Epilepsy Res, 2007, 77(1): 70-74.
|
22. |
Ferlazzo E, Mammone N, Cianci V, et al. Permutation entropy of scalp EEG: a tool to investigate epilepsies: suggestions from absence epilepsies. Clin Neurophysiol, 2014, 125(1): 13.
|
23. |
Li Xiaoli, Cui Suyuan, Voss L J. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology, 2008, 109(3): 448-456.
|
24. |
Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods, 2001, 105(1): 65-75.
|
25. |
Kim H J, Fay M P, Feuer E J, et al. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med, 2000, 19(3): 335-351.
|
26. |
Mueller A, Candrian G, Kropotov J D, et al. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys, 2010, 4(Suppl 1): 1-12.
|
27. |
Tenev A, Markovska-Simoska S, Kocarev L A, et al. Machine learning approach for classification of ADHD adults. Int J Psychophysiol, 2014, 93(1): 162-166.
|
28. |
奉国和. SVM分类核函数及参数选择比较. 计算机工程与应用, 2011, 47(3): 123-124, 128.
|
29. |
林升梁, 刘志. 基于RBF核函数的支持向量机参数选择. 浙江工业大学学报, 2007, 35(2): 163-167.
|
30. |
李盼池, 许少华. 支持向量机在模式识别中的核函数特性分析. 计算机工程与设计, 2005, 26(2): 302-304.
|