1. |
Chugh S S, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation a global burden of disease 2010 study. Circulation, 2014, 129(8): 837-847.
|
2. |
Healey J S, Connolly S J, Gold M R, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med, 2012, 366(2): 120-129.
|
3. |
Sanna T, Diener H C, Passman R S, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med, 2014, 370(26): 2478-2486.
|
4. |
Barrett P M, Komatireddy R, Haaser S, et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med, 2014, 127(1): 95.e11-95.e17.
|
5. |
Lowres N, Neubeck L, Salkeld G, et al. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study. Thromb Haemost, 2014, 111(6): 1167-1176.
|
6. |
Harris K, Edwards D, Mant J. How can we best detect atrial fibrillation? J R Coll Physicians Edinb, 2012, 42(Suppl 18): 5-22.
|
7. |
魏晓玲, 刘明, 苑新, 等. 基于多特征融合与卷积神经网络的房颤检测. 激光杂志, 2017, 38(5): 176-179.
|
8. |
Ladavich S, Ghoraani B. Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomed Signal Process Control, 2015, 18: 274-281.
|
9. |
Weng Binwei, Wang J J, Michaud F, et al. Atrial fibrillation detection using stationary wavelet transform analysis. Conf Proc IEEE Eng Med Biol Soc, 2008, (2008): 1128-1131.
|
10. |
Asgari S, Mehrnia A, Moussavi M. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput Biol Med, 2015, 60: 132-142.
|
11. |
Babaeizadeh S, Gregg R E, Helfenbein E D, et al. Improvements in atrial fibrillation detection for real-time monitoring. J Electrocardiol, 2009, 42(6): 522-526.
|
12. |
Parvaresh S, Ayatollahi A. Automatic atrial fibrillation detection using autoregressive modeling//The International Conference on Biomedical Engineering and Technology. Kuala Lumpur: Asia-Pacific Chemical, Biological & Environmental Engineering Society, 2011: 105-108.
|
13. |
武扬. 心电特征提取及分类方法研究. 上海: 上海交通大学, 2012.
|
14. |
Yazdani S, Vesin J M. Adaptive mathematical morphology for QRS fiducial points detection in the ECG//The 41st Annual International Conference of Computing in Cardiology, Cambridge, MA: MIT's Laboratory for Computational Physiology, 2014: 725-728.
|
15. |
Yeh Y C, Wang Wenjune. QRS complexes detection for ECG signal: the difference operation method. Comput Methods Programs Biomed, 2008, 91(3): 245-254.
|
16. |
Li Yanjun, Tang Xiaoying, Wang Ancong, et al. Probability density distribution of delta RR intervals: a novel method for the detection of atrial fibrillation. Australasian Physical & Engineering Sciences in Medicine, 2017, 40(3): 707-716.
|
17. |
赵勇, 洪文学, 孙士博. 基于多特征和支持向量机的心律失常分类. 生物医学工程学杂志, 2011, 28(2): 292-295.
|
18. |
Goldberger A L, Amaral L A, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): E215-E220.
|
19. |
Lempel A, Ziv J. On the complexity of finite sequences. IEEE Transactions on Information Theory, 1976, 22(1): 75-81.
|
20. |
Byun H, Lee S W. A survey on pattern recognition applications of support vector machines. International Journal of Pattern Recognition and Artificial Intelligence, 2003, 17(3): 459-486.
|
21. |
Chang C C, Lin C J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3, SI): 389-396.
|
22. |
Du Xiaochuan, Rao N, Qian Mengyao, et al. A novel method for real-time atrial fibrillation detection in electrocardiograms using multiple parameters. Ann Noninvasive Electrocardiol, 2014, 19(3): 217-225.
|
23. |
García M, Ródenas J, Alcaraz R, et al. Application of the relative wavelet energy to heart rate Independent detection of atrial fibrillation. Comput Methods Programs Biomed, 2016, 131: 157-168.
|
24. |
Kennedy A, Finlay D D, Guldenring D, et al. Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification. J Electrocardiol, 2016, 49(6): 871-876.
|
25. |
Afdala A, Nuryani N, Nugroho A S. Automatic detection of atrial fibrillation using basic shannon entropy of RR interval feature. International Conference on Science and Applied Science. Indonesia: IOPScience, 2017, 795(1): 012038.
|