1. |
赵占红, 郭俊明, 贾宝林, 等. 北京某大学在校大学生颈椎健康状况调查. 保健医学研究与实践, 2017, 14(03): 35-37.
|
2. |
李东红, 高爽, 张玮, 等. " 动则生阳”理论指导青少年颈型颈椎病的治疗. 长春中医药大学学报, 2015, 31(2): 313-315.
|
3. |
van Uden S, Silva-Correia J, Oliveira J M, et al. Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomaterials research, 2017, 21(1): 22.
|
4. |
Dowdell J, Erwin M, Choma T, et al. Intervertebral disk degeneration and repair. Neurosurgery, 2017, 80(3, S): S46-S54.
|
5. |
Shah A M, Kwon S J, Chan W W, et al. Intervertebral disc degeneration. Germany: Springer International Publishing, 2017.
|
6. |
Tian P, Fu X, Li Z J, et al. Hybrid surgery versus anterior cervical discectomy and fusion for multilevel cervical degenerative disc diseases: a meta-analysis, Scientific Reports, 2015, 5: 13454.
|
7. |
Zhang Yujie, Liang Chengzhen, Tao Yiqing, et al. Cervical total disc replacement is superior to anterior cervical decompression and fusion: a meta-analysis of prospective randomized controlled trials. PLoS One, 2015, 10(3): e0117826.
|
8. |
Menchetti P M. Cervical spine. Germany: Springer International Publishing, 2016: 193-206.
|
9. |
娄纪刚, 刘浩, 李元超, 等. 一种新型人工颈椎间盘置换的生物力学研究. 生物骨科材料与临床研究, 2016, 13(3): 10-13, 16.
|
10. |
王成焘, 葛世荣, 靳忠民, 等. 骨科植入工程学. 上海: 上海交通大学出版社, 2016: 232.
|
11. |
Fernström U. Arthroplasty with intercorporal endoprothesis in herniated disc and in painful disc. Acta Chir Scand Suppl, 1966, 357: 154-159.
|
12. |
Sengupta D K. Clinical biomechanics of the spine. Spine (Phila Pa 1976), 2017, 42(7, 1): S3.
|
13. |
Shikinami Y, Kawabe Y, Yasukawa K, et al. A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric. Spine J, 2010, 10(2): 141-152.
|
14. |
Food and Drug Administration. American FDA Drugs Database. [2017.12.06]. https://www.accessdata.fda.gov/cdrh_docs/pdf11/p110009b.pdf.
|
15. |
Food and Drug Administration. American FDA Drugs Database. [2017.12.06]. https://www.accessdata.fda.gov/cdrh_docs/pdf10/p100012b.pdf.
|
16. |
Food and Drug Administration. American FDA Drugs Database. [2017.12.06]. https://www.accessdata.fda.gov/cdrh_docs/pdf6/p060018b.pdf.
|
17. |
Food and Drug Administration. American FDA Drugs Database. [2017.12.06]. https://www.accessdata.fda.gov/cdrh_docs/pdf7/p070001b.pdf.
|
18. |
Food and Drug Administration. American FDA Drugs Database. [2017.12.06]. https://www.accessdata.fda.gov/cdrh_docs/pdf10/p100003b.pdf.
|
19. |
Sheng Sunren, Xu Huazi, Wang Yongli, et al. Comparison of cervical spine anatomy in calves, Pigs and humans. PLoS One, 2016, 11(2): e0148610.
|
20. |
李晓辉, 宋跃明, 段宏, 等. 有限元分析方法在山羊第三~第四颈椎前路融合术后生物力学研究中的应用. 中华实验外科杂志, 2015, 32(7): 1556-1559.
|
21. |
Yamada K, Ito M, Akazawa T, et al. A preclinical large animal study on a novel intervertebral fusion cage covered with high porosity titanium sheets with a triple pore structure used for spinal fusion. Eur Spine J, 2015, 24(11): 2530-2537.
|
22. |
Mayya A, Praveen P, Banerjee A, et al. Splitting fracture in bovine bone using a porosity-based spring network model. Journal of the Royal Society Interface, 2016, 13(124): 1-10.
|
23. |
巴穆登, 艾尔肯•阿木冬, 孟祥玉. 如何构建能较全面模拟人类椎间盘退变性疾病的椎间盘退变实验动物模型. 中国组织工程研究, 2015, 19(18): 2940-2946.
|
24. |
娄纪刚, 刘浩, 武文杰, 等. 新型人工颈椎间盘山羊模型的建立及其研究. 实用骨科杂志, 2017, 23(05): 426-429.
|
25. |
Daentzer D, Welke B, Hurschler C, et al. In vitro-analysis of kinematics and intradiscal pressures in cervical arthroplasty versus fusion—a biomechanical study in a sheep model with two semi-constrained prosthesis. Biomed Eng Online, 2015, 14(1): 1-15.
|
26. |
廖振华, 刘伟强. 颈椎融合术与非融合术生物力学研究进展. 生物医学工程学杂志, 2016(01): 171-176.
|
27. |
Bartels R A, Donk R D, Pavlov P, et al. Comparison of biomechanical properties of cervical artificial disc prosthesis: a review. Clinical Neurology&Neurosurgery, 2008, 110(10): 963-967.
|
28. |
Grant M, Epure L M, Salem O, et al. Development of a large animal Long-Term intervertebral disc organ culture model that includes the bony vertebrae for ex vivo studies. Tissue Eng Part C Methods, 2016, 22(7): 636-643.
|
29. |
Tang Shujie. Comparison of posterior versus transforaminal lumbar interbody fusion using finite element analysis. Influence on adjacent segmental degeneration. Saudi Med J, 2015, 36(8): 993-996.
|
30. |
Ganbat D, Kim Y H, Kim K, et al. Effect of mechanical loading on heterotopic ossification in cervical total disc replacement: a three-dimensional finite element analysis. Biomech Model Mechanobiol, 2016, 15(5): 1191-1199.
|
31. |
Welke B, Schwarze M, Hurschler C, et al. In vitro investigation of a new dynamic cervical implant: comparison to spinal fusion and total disc replacement. Eur Spine J, 2016, 25(7): 2247-2254.
|
32. |
Yu Chengcheng, Liu Peng, Huang Dageng, et al. A new cervical artificial disc prosthesis based on physiological curvature of end plate: a finite element analysis. Spine J, 2016, 16(11): 1384-1391.
|
33. |
Shirazi-Adl A I, Schmidt H, Kingma I. Spine loading and deformation-From loading to recovery. J Biomech, 2016, 49(6, SI): 813-816.
|
34. |
D’aprile P. Biomechanics of the spine. Springer International Publishing, 2015: 3-8.
|
35. |
Jaworski Ƚ, Karpiński R. Biomechanics of the human spine. Journal of Technology and Exlpoitation in Mechanical Engineering, 2017, 03(01): 8-12.
|
36. |
Artz N J, Adams M A, Dolan P. Sensorimotor function of the cervical spine in healthy volunteers. Clin Biomech (Bristol, Avon), 2015, 30(3): 260-268.
|
37. |
Trincat S, Edgard-Rosa G, Geneste G, et al. Two-level lumbar total disc replacement: functional outcomes and segmental motion after 4 years. Orthop Traumatol Surg Res, 2015, 101(1): 17-21.
|
38. |
Park C K. Total disc replacement in lumbar degenerative disc diseases. J Korean Neurosurg Soc, 2015, 58(5): 401-411.
|