1. |
Mcconnell H M, Watts T H, Weis R M, et al. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta, 1986, 864(1): 95-106.
|
2. |
Attwood S J, Choi Y, Leonenko Z. Preparation of DOPC and DPPC supported planar lipid bilayers for atomic force microscopy and atomic force spectroscopy. Int J Mol Sci, 2013, 14(2): 3514-3539.
|
3. |
Jass J, Tjärnhage T, Puu G. From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: An atomic force microscopy study. Biophys J, 2000, 79(6): 3153-3163.
|
4. |
Nair P M, Salaita K, Petit R S, et al. Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling. Nat Protoc, 2011, 6(4): 523-539.
|
5. |
Wu Jianhua, Fang Ying, Zarnitsyna V I, et al. A coupled diffusion-kinetics model for analysis of contact-area FRAP experiment. Biophys J, 2008, 95(2): 910-919.
|
6. |
Santos L C, Blair D A, Kumari S, et al. Actin polymerization-dependent activation of Cas-L promotes immunological synapse stability. Immunol Cell Biol, 2016, 94(10): 981-993.
|
7. |
Zhou X, Cao H, Yang D, et al. Two-dimensional alignment of self-assembled organic nanotubes through Langmuir-Blodgett technique. Langmuir the Acs Journal of Surfaces & Colloids, 2016, 32(49): 13065-13072.
|
8. |
Komolov A S, Lazneva E F, Zhukov Y M, et al. Atomic composition and stability of Langmuir-Blodgett monolayers based on siloxane dimer of quaterthiophene on the surface of polycrystalline gold. Physics of the Solid State, 2017, 59(12): 2491-2496.
|
9. |
Iyer A, Schilderink N, Claessens M M, et al. Membrane-bound alpha synuclein clusters induce impaired lipid diffusion and increased lipid packing. Biophys J, 2016, 111(11): 2440-2449.
|
10. |
Castellana E T, Cremer P S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surf Sci Rep, 2006, 61(10): 429-444.
|
11. |
Curran A R, Templer R H, Booth P J. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer. Biochemistry, 1999, 38(29): 9328-9336.
|
12. |
Nye J A, Groves J T. Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. Langmuir, 2008, 24(8): 4145-4149.
|
13. |
Yu Chenghan, Groves J T. Engineering supported membranes for cell biology. Med Biol Eng Comput, 2010, 48(10, SI): 955-963.
|
14. |
Lin W C, Yu C H, Triffo S, et al. Supported membrane formation, characterization, functionalization, and patterning for application in biological science and technology. Curr Protoc Chem Biol, 2010, 2(4): 235-269.
|
15. |
Jousma H, Talsma H, Spies F, et al. Characterization of liposomes. The influence of extrusion of multilamellar vesicles through polycarbonate membranes on particle size, particle size distribution and number of bilayers. Int J Pharm, 1987, 35(3): 263-274.
|
16. |
Kunding A H, Mortensen M W, Christensen S M, et al. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys J, 2008, 95(3): 1176-1188.
|
17. |
Cho N J, Hwang L Y, Solandt J J R, et al. Comparison of extruded and sonicated vesicles for planar bilayer self-assembly. Materials (Basel), 2013, 6(8): 3294-3308.
|
18. |
Traïkia M, Warschawski D E, Recouvreur M, et al. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance. Eur Biophys J, 2000, 29(3): 184-195.
|
19. |
Zheng Peilin, Bertolet G, Chen Yuhui, et al. Super-resolution imaging of the natural killer cell immunological synapse on a glass-supported planar lipid bilayer. J Vis Exp, 2015(96): 52502.
|
20. |
Zhang Shaosen, Xu Liling, Zhao Xingwang, et al. A new and robust method of tethering IgG surrogate antigens on lipid bilayer membranes to facilitate the TIRFM based live cell and single molecule imaging experiments. Plos One, 2013, 8(5): e63735.
|
21. |
Fischer N O, Blanchette C D, Chromy B A, et al. Immobilization of His-tagged proteins on nickel-chelating nanolipoprotein particles. Bioconjug Chem, 2009, 20(3): 460-465.
|
22. |
Mcever R P. Selectins: initiators of leukocyte adhesion and signaling at the vascular wall. Cardiovasc Res, 2015, 107(3): 331-339.
|
23. |
Tanaka M, Hermann J, Haase I, et al. Frictional drag and electrical manipulation of recombinant proteins in polymer-supported membranes. Langmuir, 2007, 23(10): 5638-5644.
|
24. |
Seu K J, Cambrea L R, Everly R M, et al. Influence of lipid chemistry on membrane fluidity: Tail and headgroup interactions. Biophys J, 2006, 91(10): 3727-3735.
|
25. |
Tolentino T P, Wu Jianhua, Zarnitsyna V I, et al. Measuring diffusion and binding kinetics by contact area FRAP. Biophys J, 2008, 95(2): 920-930.
|
26. |
Tian Ye, Schwieters C D, Opella S J, et al. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH. J Biomol NMR, 2017, 67(1): 35-49.
|
27. |
Tolentino T P. Measuring ligand diffusivity and receptor binding kinetics within a cell membrane contact area. Georgia Institute of Technology, 2001, 86(S421): 67-71.
|
28. |
Dustin M L, Bromley S K, Davis M M, et al. Identification of self through two-dimensional chemistry and synapses. Annu Rev Cell Dev Biol, 2001, 17(1): 133-157.
|
29. |
Dustin M L. Supported bilayers at the vanguard of immune cell activation studies. J Struct Biol, 2009, 168(1): 152-160.
|
30. |
Kiessling V, Yang S T, Tamm L K. Supported lipid bilayers as models for studying membrane domains. Current Topics in Membranes, 2015, 75: 1-23.
|
31. |
Liu W, Tobias M, Pavel T, et al. Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med, 2010, 207(5): 1095-1111.
|