1. |
Kennedy J E. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer, 2005, 5(4): 321-327.
|
2. |
Ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol, 2007, 93(1/3): 111-129.
|
3. |
Mcdannold N, Clement G T, Black P, et al. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery, 2010, 66(2): 323-332.
|
4. |
Elias W J, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med, 2013, 369(7): 640-648.
|
5. |
Chang W S, Jung H H, Kweon E J, et al. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes. J Neurol Neurosurg Psychiatry, 2015, 86(3): 257-264.
|
6. |
Fry F J. Precision high intensity focusing ultrasonic machines for surgery. Am J Phys Med, 1958, 37(3): 152-156.
|
7. |
Fry F J, Kossoff G, Eggleton R C, et al. Threshold ultrasonic dosages for structural changes in the mammalian brain. J Acoust Soc Am, 1970, 48(6b): 1413-1417.
|
8. |
Ram Z, Cohen Z R, Harnof S, et al. Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery, 2006, 59(5): 949-955.
|
9. |
Kohler M O, Mougenot C, Quesson B, et al. Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry. Med Phys, 2009, 36(8): 3521-3535.
|
10. |
Partanen A, Tillander M, Yarmolenko P S, et al. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia. Med Phys, 2013, 40(1): 013301.
|
11. |
Zhou Yufeng. Generation of uniform lesions in high intensity focused ultrasound ablation. Ultrasonics, 2013, 53(2): 495-505.
|
12. |
Lee K I, Sim I, Kang G S, et al. Numerical simulation of temperature elevation in soft tissue by high intensity focused ultrasound. Modern Physics Letters B, 2008, 22(11): 803-807.
|
13. |
Westervelt P J. Parametric acoustic array. J Acoust Soc Am, 1963, 35(4): 535-537.
|
14. |
Hallaj I M, Cleveland R O. FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound. J Acoust Soc Am, 1999, 105(5): L7-L12.
|
15. |
Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol, 1948, 1(2): 93-122.
|
16. |
Sapareto S A, Dewey W C. Thermal dose determination in cancer-therapy. Int J Radiat Oncol Biol Phys, 1984, 10(6): 787-800.
|
17. |
Ding Xin, Wang Yizhe, Zhang Qian, et al. Modulation of transcranial focusing thermal deposition in nonlinear HIFU brain surgery by numerical simulation. Phys Med Biol, 2015, 60(10): 3975-3998.
|
18. |
Pinton G, Aubry J F, Fink M, et al. Effects of nonlinear ultrasound propagation on high intensity brain therapy. Med Phys, 2011, 38(3): 1207-1216.
|
19. |
Aubry J F, Tanter M, Pernot M, et al. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am, 2003, 113(1): 84-93.
|
20. |
Pernot M, Aubry J F, Tanter M, et al. Prediction of the skull overheating during high intensity focused ultrasound transcranial brain therapy//Ultrasonics Symposium, Montreal: IEEE, 2004(2): 1005-1008.
|
21. |
Ghanouni P, Dobrotwir A, Bazzocchi A A, et al. Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol, 2017, 27(2): 732-740.
|
22. |
Zhang Yanrong, Aubry J F, Zhang Junfeng, et al. Defining the optimal age for focal lesioning in a rat model of transcranial HIFU. Ultrasound in Medicine and Biology, 2015, 41(2): 449-455.
|
23. |
Fan X B, Hynynen K. Ultrasound surgery using multiple sonications-treatment time considerations. Ultrasound in Medicine and Biology, 1996, 22(4): 471-482.
|
24. |
陶敏慧. HIFU经颅脑肿瘤治疗焦域的数值仿真研究. 天津: 天津医科大学, 2016.
|