1. |
周光华, 李岳峰, 孟群. 医学图像处理技术与应用分析. 中国卫生信息管理杂志, 2011, 8(6): 44-47.
|
2. |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets//Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27. Montreal, Canada: Curran Associates, Inc., 2014: 2672-2680.
|
3. |
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv, 2015: 1511.06434.
|
4. |
Xue Yuan, Xu Tao, Zhang Han, et al. SegAN: Adversarial network with multi-scale L1 loss for medical image segmentation. Neuroinformatics, 2018, 16(3/4): 383-392.
|
5. |
Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network. CVPR, 2017, 2(3): 4.
|
6. |
Isola P, Zhu Junyan, Zhou Tinghui, et al. Image-to-image translation with conditional adversarial networks//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 5967-5976.
|
7. |
Wang Chaoyue, Xu Chang, Wang Chaohui, et al. Perceptual adversarial networks for image-to-image transformation. IEEE Trans Image Process, 2018, 27(8): 4066-4079.
|
8. |
Li Jie, Skinner K A, Eustice R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robotics and Automation Letters, 2018, 3(1): 387-394.
|
9. |
Wolterink J M, Leiner T, Viergever M A, et al. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging, 2017, 36(12): 2536-2545.
|
10. |
Yang Qingsong, Yan Pingkun, Zhang Yanbo, et al. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging, 2018, 37(6): 1348-1357.
|
11. |
Arjovsky M, Chintala S, Bottou L. Wasserstein GAN. arXiv preprint arXiv, 2017: 1701.07875.
|
12. |
Yi Xin, Babyn P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging, 2018, 31(5): 655-669.
|
13. |
Schlegl T, Seeböck P, Waldstein S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery//International Conference on Information Processing in Medical Imaging. Cham: Springer, 2017: 146-157.
|
14. |
Kohl S, Bonekamp D, Schlemmer H P, et al. Adversarial networks for the detection of aggressive prostate cancer. arXiv preprint arXiv, 2017: 1702.
|
15. |
Baumgartner C F, Koch L M, Tezcan K C, et al. Visual feature attribution using Wasserstein GANs//Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017: 8309-8319.
|
16. |
唐思源, 邢俊凤, 杨敏. 基于 BP 神经网络的医学图像分割新方法. 计算机科学, 2017, 44(S1): 240-243.
|
17. |
Zhang Y, Yang L, Chen J, et al. Deep adversarial networks for biomedical image segmentation utilizing unannotated images//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2017: 408-416.
|
18. |
Kamnitsas K, Baumgartner C, Ledig C, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks//International Conference on Information Processing in Medical Imaging. Cham: Springer, 2017: 597-609.
|
19. |
Dai W, Dong N, Wang Z, et al. SCAN: Structure correcting adversarial network for organ segmentation in chest X-rays//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 263-273.
|
20. |
Nie D, Trullo R, Lian J, et al. Medical image synthesis with context-aware generative adversarial networks//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2017: 417-425.
|
21. |
Tu Zhuowen, Bai Xiang. Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans Pattern Anal Mach Intell, 2010, 32(10): 1744-1757.
|
22. |
Wolterink J M, Dinkla A M, Savenije M H F, et al. Deep MR to CT synthesis using unpaired data//International Workshop on Simulation and Synthesis in Medical Imaging. Cham: Springer, 2017: 14-23.
|
23. |
Ben-Cohen A, Klang E, Raskin S P, et al. Virtual PET images from CT data using deep convolutional networks: initial results//International Workshop on Simulation and Synthesis in Medical Imaging. Cham: Springer, 2017: 49-57.
|
24. |
Bi L, Kim J, Kumar A, et al. Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs)//Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. Cham: Springer, 2017: 43-51.
|
25. |
Chartsias A, Joyce T, Dharmakumar R, et al. Adversarial image synthesis for unpaired multi-modal cardiac data//International Workshop on Simulation and Synthesis in Medical Imaging. Cham: Springer, 2017: 3-13.
|
26. |
Costa P, Galdran A, Meyer M I, et al. End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging, 2018, 37(3, SI): 781-791.
|
27. |
Zhao He, Li Huiqi, Maurer-Stroh S, et al. Synthesizing retinal and neuronal images with generative adversarial nets. Med Image Anal, 2018, 49: 14-26.
|
28. |
Yang Guang, Yu Simiao, Dong Hao, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging, 2018, 37(6): 1310-1321.
|
29. |
Shitrit O, Raviv T R. Accelerated magnetic resonance imaging by adversarial neural network//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2017: 30-38.
|
30. |
Li Z, Wang Y, Yu J. Reconstruction of thin-slice medical images using generative adversarial network//International Workshop on Machine Learning in Medical Imaging. Cham: Springer, 2017: 325-333.
|
31. |
Zhang L, Gooya A, Frangi A F. Semi-supervised assessment of incomplete LV coverage in cardiac MRI using generative adversarial nets//International Workshop on Simulation and Synthesis in Medical Imaging. Cham: Springer, 2017: 61-68.
|
32. |
Hu B, Tang Y, Eric I, et al. Unsupervised learning for cell-level visual representation with generative adversarial networks. IEEE Journal of Biomedical and Health Informatics, 2018: 1.
|
33. |
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs//Advances in Neural Information Processing Systems, 2017: 5767-5777.
|
34. |
Chen X, Duan Y, Houthooft R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets//Advances in Neural Information Processing Systems, 2016: 2172-2180.
|
35. |
Frid-Adar M, Klang E, Amitai M, et al. Synthetic data augmentation using GAN for improved liver lesion classification//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018: 289-293.
|
36. |
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks//IEEE International Conference on Computer Vision, 2017: 2223-2232.
|
37. |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
38. |
Chen H, Qi X, Yu L, et al. DCAN: deep contour-aware networks for accurate gland segmentation//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016: 2487-2496.
|
39. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 2014: 1409.1556.
|
40. |
Yan P, Xu S, Rastinehad A R, et al. Adversarial image registration with application for MR and TRUS image fusion. arXiv preprint arXiv, 2018: 1804.11024.
|