1. |
Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6): 889-909.
|
2. |
Tsanas A, Little M A, Mcsharry P E, et al. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans Biomed Eng, 2012, 59(5): 1264-1271.
|
3. |
Sakar B E, Isenkul M E, Sakar C O, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform, 2013, 17(4): 828-834.
|
4. |
王刚, 郑汭, 谭玉燕, 等. 帕金森病疾病经济负担及相关因素的调查研究. 中华神经科杂志, 2006, 39(5): 336-337.
|
5. |
姚芳传, 喻东山. 帕金森病的临床特点. 新医学, 2002, 33(5): 267.
|
6. |
中华医学会神经病学分会运动障碍及帕金森病学组. 帕金森病的诊断. 中华神经科杂志, 2006, 39(6): 408-409.
|
7. |
Ho A K, Iansek R, Marigliani C, et al. Speech impairment in a large sample of patients with Parkinson’s disease. Behav Neurol, 1998, 11(3): 131-137.
|
8. |
Trail M, Fox C, Ramig L O, et al. Speech treatment for Parkinson’s disease. NeuroRehabilitation, 2005, 20(3): 205-221.
|
9. |
Little M A, McSharry P E, Hunter E J, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans Biomed Eng, 2009, 56(4): 1015-1022.
|
10. |
Smith A E, Nugent C D, McClean S I. Performance evaluation of artificial intelligence classifiers for the medical domain. Stud Health Technol Inform, 2002, 90: 553-556.
|
11. |
Goldschmidt D, Decaestecker C, Berthe J V, et al. The contribution of image cytometry and artificial intelligence-related methods of numerical data analysis for adipose tumor histopathologic classification. Lab Invest, 1996, 75(3): 295-306.
|
12. |
Buciński A, Marszałł M P, Krysiński J A, et al. Contribution of artificial intelligence to the knowledge of prognostic factors in Hodgkin’s lymphoma. Eur J Cancer Prev, 2010, 19(4): 308-312.
|
13. |
Bayestehtashk A, Asgari M, Shafran I, et al. Fully automated assessment of the severity of Parkinson’s disease from dpeech. Comput Speech Lang, 2015, 29(1): 172-185.
|
14. |
Khan T, Westin J, Dougherty M. Classification of speech intelligibility in Parkinson’s disease. Biocybern Biomed Eng, 2014, 34(1): 35-45.
|
15. |
El Moudden I, Ouzir M, Elbernoussi S. Feature selection and extraction for class prediction in dysphonia measures analysis: A case study on Parkinson’s disease speech rehabilitation. Technol Health Care, 2017, 25(4): 693-708.
|
16. |
Gürüler H. A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput Appl, 2017, 28(7): 1657-1666.
|
17. |
Tsanas A, Little M A, McSharry P E. Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. J R Soc Interface, 2011, 8(59): 842-855.
|
18. |
高春丽, 周梁, 王坚, 等. 帕金森病患者的发音和言语障碍及治疗学进展. 中华老年医学杂志, 2006, 25(9): 712-715.
|
19. |
张玉海, 杜怀栋, 陈惠军, 等. 帕金森病的嗓音特征. 听力学及言语疾病杂志, 2001, 9(2): 84-86.
|
20. |
Solomon N P, Hixon T J. Speech breathing in Parkinson’s disease. J Speech Hear Res, 1993, 36(2): 294-310.
|
21. |
Martínez-Sánchez F, Meilán J J G, Carro J, et al. Speech rate in Parkinson’s disease: A controlled study. Neurología (English Edition), 2016, 31(7): 466-472.
|
22. |
Adler C H, Beach T G, Hentz J G, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease clinicopathologic study. Neurology, 2014, 83(5): 406-412.
|
23. |
Li Yongming, Yang Liuyang, Wang Pin, et al. Classification of Parkinson’s disease by decision tree based instance selection and ensemble learning algorithms. J Med Imag Health In, 2017, 7(2): 444-452.
|
24. |
Zhang Shichao, Li Xuelong, Zong Ming, et al. Learning k for kNN classification. ACM Transactions on Intelligent Systems and Technology, 2017, 8(3, SI): 1-19.
|
25. |
Hartigan J A, Wong M A. Algorithm AS 136: A K-means clustering algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1979, 28(1): 100-108.
|
26. |
Zhang Hehua, Yang Liuyang, Liu Yuchuan, et al. Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples. Biomed Eng Online, 2016, 15(1): 122.
|
27. |
Torlay L, Perrone-Bertolotti M, Thomas E, et al. Machine learning-XGBoost analysis of language networks to classify patients with epilepsy. Brain informatics, 2017, 4(3): 159-169.
|