1. |
Mozaffarian D, Benjamin E J, Go A S, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation, 2015, 131(4): e29-322.
|
2. |
刘维永, 金振晓. 终末期心力衰竭外科治疗的进展与思考. 中华胸心血管外科杂志, 2012, 28(6): 377-380.
|
3. |
Rose E A, Gelijns A C, Moskowita A J, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med, 2001, 345(20): 1435-1443.
|
4. |
Slaughter M S, Bartoli C R, Sobieski M A, et al. Intraoperative evaluation of the HeartMate II flow estimator. J Heart Lung Transplant, 2009, 28(1): 39-43.
|
5. |
Slaughter M S, Rogers J G, Milano C A, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med, 2009, 361(23): 2241-2251.
|
6. |
Vollkron M, Schima H, Huber L, et al. Development of a suction detection system for axial blood pumps. Artif Organs, 2004, 28(8): 709-716.
|
7. |
Vollkron M, Schima H, Huber L, et al. Advanced suction detection for an axial flow pump. Artif Organs, 2006, 30(9): 665-670.
|
8. |
Vollkron M, Voitl P, Ta J, et al. Suction events during left ventricular support and ventricular arrhythmias. J Heart Lung Transplant, 2007, 26(8): 819-825.
|
9. |
Simaan M A, Ferreira A, Chen S, et al. A dynamical state space representation and performance analysis of a feedback-controlled rotary left ventricular assist device. IEEE Trans Contr Syst Technol, 2009, 17(1): 15-28.
|
10. |
Kitamura T, Matsushima Y, Tokuyama T, et al. Physical model-based indirect measurements of blood pressure and flow using a centrifugal pump. Artif Organs, 2000, 24(8): 589-593.
|
11. |
Giridharan G A, Skliar M. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study. Artif Organs, 2006, 30(4): 301-307.
|
12. |
Karantonis D M, Lovell N H, Ayre P J, et al. Identification and classification of physiologically significant pumping states in an implantable rotary blood pump. Artif Organs, 2006, 30(9): 671-679.
|
13. |
Ferreira A, CHEN S, Simaan M A, et al. A discriminant-analysis-based suction detection system for rotary blood pumps//Proceedings of the 28th IEEE EMBS Annual International Conference. New York City, USA: IEEE, 2006: 5382-5385.
|
14. |
Karantonis D M, Cloherty S L, Lovell N H, et al. Noninvasive detection of suction in an implantable rotary blood pump using neural networks. Int J Comput Intell Appl, 2008, 7(3): 237-247.
|
15. |
Wang Yu, Simaan M A. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm. IEEE J Biomed Health Inform, 2013, 17(3): 654-663.
|
16. |
Tzallas A T, Katertsidis N S, Karvounis E C, et al. Modeling and simulation of speed selection on left ventricular assist devices. Comput Biol Med, 2014, 51(1): 128-139.
|
17. |
Faragallah G, Wang Y, Divo E, et al. A new current-based control model of the combined cardiovascular and rotary left ventricular assist device//Proceedings of 2011 American Control Conference. San Francisco, USA: IEEE, 2011: 4775-4780.
|
18. |
Ferreira A, Simaan M A, Boston J R, et al. Frequency and time-frequency based indices for suction detection in rotary blood pumps//Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing. Toulouse, France: IEEE, 2006: 1064-1067.
|
19. |
Viswajith V S, Wang Yu, Simaan M A. Aortic valve dynamics and blood flow control in continuous flow left ventricular assist devices//Proceedings of 2017 American Control Conference. Seattle, USA: IEEE, 2017: 1456-1461.
|