1. |
党俊武. 应对人口老龄化顶层设计刍议. 老龄科学研究, 2017, 5(1): 3-14.
|
2. |
Valizadeh S A, Liem F, Merillat S A, et al. Identification of individual subjects on the basis of their brain anatomical features. Sci Rep, 2018, 8(1): 5611.
|
3. |
Fan Yangteng, Fang Yawen, Chen Yaping, et al. Aging, cognition, and the brain: effects of age-related variation in white matter integrity on neuropsychological function. Aging Mental Health, 2018, 10: 1-9.
|
4. |
彭飞, 耿左军, 朱青峰, 等. 健康成人大脑灰质体积年龄相关性变化的研究. 河北医药, 2015, 37(1): 28-31.
|
5. |
Cole J H, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci, 2017, 40(12): 681-690.
|
6. |
Cole J H, Ritchie S J, Bastin M E, et al. Brain age predicts mortality. Mol Psychiatry, 2018, 23(5): 1385-1392.
|
7. |
Franke K, Ziegler G, Klöppel S, et al. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage, 2010, 50(3): 883-892.
|
8. |
Cole J H, Underwood J, Caan M W, et al. Increased brain-predicted aging in treated HIV disease. Neurology, 2017, 88(14): 1349-1357.
|
9. |
Koutsouleris N, Davatzikos C, Borgwardt S, et al. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull, 2014, 40(5): 1140-1153.
|
10. |
Pardoe H R, Cole J H, Blackmon K, et al. Structural brain changes in medically refractory focal epilepsy resemble premature brain aging. Epilepsy Res, 2017, 133: 28-32.
|
11. |
Franke K, Gaser C, Manor B, et al. Advanced BrainAGE in older adults with type 2 diabetes mellitus. Front Aging Neurosci, 2013, 5(1): 90.
|
12. |
Ronan L, Alexander-Bloch A F, Wagstyl K A, et al. Obesity associated with increased brain age from midlife. Neurobiol Aging, 2016, 47: 63-70.
|
13. |
林岚, 张柏雯, 付振荣, 等. 高血压对大脑年龄估值差的影响. 中国医疗设备, 2015, 30(6): 7-11.
|
14. |
Gaser C, Franke K, Kloeppel S A, et al. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease. PLoS One, 2013, 8(6): e67346-e67346.
|
15. |
Cole J H, Annus T, Wilson L R, et al. Brain-predicted age in down syndrome is associated with b-amyloid deposition and cognitive decline. Neurobiol of Aging, 2017, 56: 41-49.
|
16. |
Cole J H, Leech R, Sharp D J, et al. Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann Neurol, 2015, 77(4): 571-581.
|
17. |
Schnack H G, van Haren N E, Nieuwenhuis M, et al. Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study. American Journal of Psychiatry, 2016, 173(6): 607-616.
|
18. |
Steffener J, Habeck C, O'shea D, et al. Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiol Aging, 2016, 40: 138-144.
|
19. |
Su L, Wang L, Hu D. Predicting the age of healthy adults from structural MRI by sparse representation//International Conference on Intelligent Science and Intelligent Data Engineering, Nanjing: Springer-Verlag, 2012: 271-279.
|
20. |
Cole J H, Rpk P, Tsagkrasoulis D, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage, 2017, 163: 115-124.
|
21. |
Wang Jieqiong, Dai Dai, Li Meng, et al. Human age estimation with surface-based features from MRI images//Lecture Notes in Computer Science, Berlin: Springer, 2012(7588): 111-118.
|
22. |
Pardoe H R, Kuzniecky R. NAPR: a cloud-based framework for neuroanatomical age prediction. Neuroinformatics, 2018, 16(1): 43-49.
|
23. |
Wang Bing, Pham T D. MRI-based age prediction using hidden Markov models. J Neurosci Methods, 2011, 199(1): 140-145.
|
24. |
Khundrakpam B S, Tohka J, Evans A C. Prediction of brain maturity based on cortical thickness at different spatial resolutions. Neuroimage, 2015, 111: 350-359.
|
25. |
Alam S B, Kobashi S. Simple brain atrophy quantification method using Mr images//2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), 2016: 743-746.
|
26. |
Fujimoto R, Ito K, Wu Kai, et al. Brain age estimation from T1-Weighted images using effective local features//2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017: 3028-3031.
|
27. |
Ball G, Adamson C, Beare R, et al. Modelling neuroanatomical variation during childhood and adolescence with neighbourhood-preserving embedding. Sci Rep, 2017, 7(1): 17796.
|
28. |
Lancaster J, Lorenz R, Leech R, et al. Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Front Aging Neurosci, 2018, 10(1): 13.
|
29. |
林岚, 付振荣, 张柏雯, 等. DTI脑连接组在大脑疾病方面的研究进展. 中国医疗设备, 2015, 30(6): 1-6.
|
30. |
Mwangi B, Hasan K M, Soares J C. Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: a machine learning approach. Neuroimage, 2013, 75: 58-67.
|
31. |
Lin Lan, Jin Cong, Fu Zhenrong, et al. Predicting healthy older adult's brain age based on structural connectivity networks using artificial neural networks. Comput Methods Programs Biomed, 2016, 125: 8-17.
|
32. |
Dean I D, O'muircheartaigh J, Dirks H, et al. Estimating the age of healthy infants from quantitative myelin water fraction Maps. Hum Brain Mapp, 2015, 36(4): 1233-1244.
|
33. |
林岚, 靳聪, 付振荣, 等. 健康老年人脑年龄预测: 基于尺度子配置模型的大脑连接组分析. 北京工业大学学报, 2015, (6): 955-960.
|
34. |
Tian Lixia, Ma Lin. Microstructural changes of the human brain from early to mid-adulthood. Front Hum Neurosci, 2017, 11: 393.
|
35. |
Tian Lixia, Ma Lin, Wang Linlin. Alterations of functional connectivities from early to middle adulthood: clues from multivariate pattern analysis of resting-state fMRI data. Neuroimage, 2016, 129: 389-400.
|
36. |
Dosenbach N U, Nardos B, Cohen A L, et al. Prediction of individual brain maturity using fMRI. Science, 2010, 329(5997): 1358-1361.
|
37. |
Li Hongming, Satterthwaite T D, Fan Yong. Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington: IEEE Computer Society, 2018: 101-104.
|
38. |
Brown T T, Kuperman J M, Chung Y, et al. Neuroanatomical assessment of biological maturity. Current Biology, 2012, 22(18): 1693-1698.
|
39. |
Erus G, Battapady H, Satterthwaite T D, et al. Imaging patterns of brain development and their relationship to cognition. Cerebral Cortex, 2015, 25(6): 1676-1684.
|
40. |
Cherubini A, Caligiuri M E, Peran P A, et al. Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction. IEEE J Biomed Health Inform, 2016, 20(5): 1232-1239.
|
41. |
Liem F, Varoquaux G, Kynast J, et al. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage, 2017, 148: 179-188.
|
42. |
Sabuncu M R, Konukoglu E. Clinical prediction from structural brain MRI scans: a Large-Scale empirical study. Neuroinformatics, 2015, 13(1): 31-46.
|
43. |
田苗, 林岚, 张柏雯, 等. 深度学习在神经影像中的应用研究. 中国医疗设备, 2016, 31(12): 4-9.
|
44. |
杨业, 汤艺, 彭微微, 等. 共情: 遗传-环境-内分泌-大脑机制. 科学通报, 2017, 62(32): 3729-3742.
|
45. |
林岚, 张柏雯, 王婧璇, 等. 认知储备在大脑老化中的研究进展. 医疗卫生装备, 2017, 38(9): 93-98.
|
46. |
Li Yongming, Liu Yuchuan, Wang Pin, et al. Dependency criterion based brain pathological age estimation of Alzheimer's disease patients with Mr scans. Biomed Eng Online, 2017, 16(1): 50.
|