1. |
段纪俊, 严亚琼, 杨念念, 等. 中国恶性肿瘤发病与死亡的国际比较分析. 中国医学前沿杂志: 电子版, 2016, 8(7): 17-23.
|
2. |
陈诺, 石毓君. 肺癌发病, 诊断及治疗相关研究进展. 世界最新医学信息文摘, 2018, 18(6): 114-116.
|
3. |
Sverzellati N, Silva M, Calareso G, et al. Low-dose computed tomography for lung cancer screening: comparison of performance between annual and biennial screen. Eur Radiol, 2016, 26(11): 3821-3829.
|
4. |
徐红卫. 低剂量CT在早期肺癌筛查中的应用及影像学表现. 深圳中西医结合杂志, 2017, 27(5): 75-76.
|
5. |
郑光远, 刘峡壁, 韩光辉, 等. 医学影像计算机辅助检测与诊断系统综述. 软件学报, 2018, 29(5): 1471-1514.
|
6. |
Han Fangfang, Wang Huafeng, Zhang Guopeng, et al. Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging, 2015, 28(1): 99-115.
|
7. |
罗红兵, 周鹏, 青浩渺, 等. 计算机辅助检测系统在低剂量 CT 肺癌筛查中非钙化肺结节检出方法的研究. 肿瘤预防与治疗, 2017, 30(1): 33-38.
|
8. |
Armato I S, Mclennan G, Bidaut L A, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys, 2011, 38(2): 915-931.
|
9. |
Setio A A, Traverso A, de Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal, 2017, 42: 1-13.
|
10. |
Dou Qi, Chen Hao, Yu Lequan, et al. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans Biomed Eng, 2017, 64(7): 1558-1567.
|
11. |
田苗, 林岚, 张柏雯, 等. 深度学习在神经影像中的应用研究. 中国医疗设备, 2016, 31(12): 4-9.
|
12. |
Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis. Med Image Anal, 2017, 42: 60-88.
|
13. |
刘飞, 张俊然, 杨豪. 基于深度学习的医学图像识别研究进展. 中国生物医学工程学报, 2018, 37(1): 86-94.
|
14. |
杨佳玲, 赵涓涓, 强彦, 等. 基于深度信念网络的肺结节良恶性分类. 科学技术与工程, 2016, 16(32): 69-74.
|
15. |
Chen Sihong, Qin Jing, Ji Xing, et al. Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images. IEEE Trans Med Imaging, 2017, 36(3): 802-814.
|
16. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks//25th International Conference on Neural Information Processing Systems. Lake Tahoe: Neural Information Processing Systems, 2012(1): 1097-1105.
|
17. |
Han S S, Park G H, Lim W, et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS One, 2018, 13(1): e0191493.
|
18. |
Kang Guixia, Liu Kui, Hou Beibei, et al. 3D multi-view convolutional neural networks for lung nodule classification. PLoS One, 2017, 12(11): e0188290.
|
19. |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition//2016 IEEE Conference On Computer Vision And Pattern Recognition (CPVR), Las Vegas: IEEE Computer Society, 2016: 770-778.
|
20. |
Shin H C, Roth H R, Gao Mingchen, et al. Three aspects on using convolutional neural networks for computer-aided detection in medical imaging//Deep Learning and Convolutional Neural Networks for Medical Image Computing, Hawaii: IEEE Computer Society, 2017: 113-136.
|
21. |
Depeursinge A, Vargas A, Platon A A, et al. Building a reference multimedia database for interstitial lung diseases. Computerized Medical Imaging and Graphics, 2012, 36(3): 227-238.
|
22. |
Shi Zhenghao, Hao Huan, Zhao Minghua, et al. A deep CNN based transfer learning method for false positive reduction. Multimed Tools Appl, 2019, 78(1): 1017-1033.
|
23. |
Nibali A, He Zhen, Wollersheim D. Pulmonary nodule classification with deep residual networks. Int J Comput Assist Radiol Surg, 2017, 12(10): 1799-1808.
|
24. |
Christiansen P, Nielsen L N, Steen K A, et al. DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors, 2016, 16(11): 1904-1925.
|
25. |
Wei Kaiqiang, Zhao Xu. Multiple-branches faster RCNN for human parts detection and pose estimation//Computer Vision-ACCV 2016 Workshops, 2017, 10118: 453-462.
|
26. |
Qiu Xin, Yuan Chun. Improving object detection with convolutional neural network via iterative mechanism// Neural Information Processing: 24th International Conference, Guangzhou: Asia Pacific Neural Network Society, 2017: 141-150.
|
27. |
Ding J, Li A, Hu Z, et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks//International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec: MICCAI Society, 2017: 559-567.
|
28. |
Sun Wenqing, Zheng Bin, Qian Wei. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med, 2017, 89: 530-539.
|
29. |
陈思宏. 肺结节CT图像中基于多任务特征的语义属性自动评级. 深圳: 深圳大学, 2017.
|