1. |
Tang Hong, Li Ting, Park Y, et al. Separation of heart sound signal from noise in joint cycle frequency-time-frequency domains based on fuzzy detection. IEEE Trans Biomed Eng, 2010, 57(10): 2438-2447.
|
2. |
Gavrovska A, Bogdanovic V, Reljin I, et al. Automatic heart sound detection in pediatric patients without electrocardiogram reference via pseudo-affine Wigner-Ville distribution and Haar wavelet lifting. Comput Methods Programs Biomed, 2014, 113(2): 515-528.
|
3. |
Abbas A, Bassam R. Phonocardiography signal processing. New York: Morgan and Claypool, 2009: 29-37.
|
4. |
Safara F, Doraisamy S, Azman A, et al. Multi-level basis selection of wavelet packet de-composition tree for heart sound classification. Comput Biol Med, 2013, 43(10): 1407-1414.
|
5. |
Ortiz P M, Drugalski C, Miranda V E, et al. Modelos acústicos HMM multimodales para sonidos cardiacos y pulmonares. Revista mexicana de ingeniería biomédica, 2014, 35(3): 197-209.
|
6. |
Ortiz J J G, Phoo C P, Wiens J. Heart sound classification based on temporal alignment techniques// Computing in Cardiology Conference (CINC). Vancouver: IEEE, 2016, 43: 589-592.
|
7. |
Maknickas V, Maknickas A. Recognition of normal-abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients. Physiol Meas, 2017, 38(8): 1671-1684.
|
8. |
Nabih-Ali M. El-Dahshan E A. Yahia A S. A review of intelligent systems for heart sound signal analysis. J Med Eng Technol, 2017, 41(7): 553-563.
|
9. |
Papadaniil C D, Hadjileontiadis L J. Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features. IEEE J Biomed Health Inform, 2014, 18(4): 1138-1152.
|
10. |
Sh-Hussain H, Mohamad M M, Zahilah R, et al. Classification of heart sound signals using autoregressive model and hidden markov model. Journal of Medical Imaging and Health Informatics, 2017, 7(4): 755-763.
|
11. |
马莉. 基于小波包分解的复杂心音信号分段定位与特征提取研究. 昆明: 云南大学, 2015.
|
12. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84-90.
|
13. |
Frigieri E P, Brito T G, Ynoguti C A, et al. Pattern recognition in audible sound energy emissions of AISI 52100 hardened steel turning: a MFCC-based approach. International Journal of Advanced Manufacturing Technology, 2017, 88(5-8): 1383-1392.
|
14. |
Mohamed A. Deep neural network acoustic models for asr. Toronto: University of Toronto, 2014.
|
15. |
Hu Zheng, Li Yongping, Yang Zhiyong. Improving convolutional neural network using pseudo derivative ReLU//5th International Conference On Systems And Informatics (ICSAI), Nanjing: IEEE, 2018: 283-287.
|
16. |
Poernomo A, Kang D K. Biased dropout and crossmap dropout: learning towards effective dropout regularization in convolutional neural network. Neural Networks, 2018, 104: 60-67.
|
17. |
Kingma D P, Ba J. Adam: a method for stochastic optimization// 3rd International Conference for Learning Representations, San Diego, 2015. arXiv: 1412.6980.
|
18. |
Bobillo I J D. A tensor approach to heart sound classification//2016 Computing in Cardiology Conference (CinC), IEEE, 2016: 629-632.
|