1. |
Baust J G, Gao Dayong, Baust J M. Cryopreservation: An emerging paradigm change. Organogenesis, 2009, 5(3): 90-96.
|
2. |
Lovelock J E, Bishop M W. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature, 1959, 183(4672): 1394-1395.
|
3. |
Guillouzo A, Rialland L, Fautrel A, et al. Survival and function of isolated hepatocytes after cryopreservation. Chem Biol Interact, 1999, 121(1): 7-16.
|
4. |
Nagahara Y, Sekine H, Otaki M, et al. Use of high concentrations of dimethyl sulfoxide for cryopreservation of HepG2 cells adhered to glass and polydimethylsiloxane matrices. Cryobiology, 2016, 72(1): 53-59.
|
5. |
李佳佳, 程腾, 贺小英, 等. 二甲基亚砜和胎牛血清对293T细胞冷冻效果的影响. 信阳师范学院学报:自然科学版, 2013, 26(2): 217-220.
|
6. |
Hunter N, Foster J, Chong A, et al. Transmission of prion diseases by blood transfusion. J Gener Virol, 2002, 83(Pt 11): 2897-2905.
|
7. |
睢晓洁, 潘超, 杨静, 等. 以氧化三甲胺作为细胞冻存保护剂的研究. 中国科技论文, 2017, 12(12): 1341-1345.
|
8. |
滕芸. 基于蚕丝蛋白的低温保护剂的研究. 上海: 上海理工大学, 2018.
|
9. |
Halwani D O, Brockbank K G, Duman J G, et al. Recombinant Dendroides canadensis antifreeze proteins as potential ingredients in cryopreservation solutions. Cryobiology, 2014, 68(3): 411-418.
|
10. |
Sun K H, Jung K E, Won Y H, et al. Improvement in ovarian tissue quality with supplementation of antifreeze protein during warming of vitrified mouse ovarian tissue. Yonsei Med J, 2018, 59(2): 331-336.
|
11. |
Rubinsky B, Arav A, Mattioli M, et al. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem Biophys Res Commun, 1990, 173(3): 1369-1374.
|
12. |
Arav A, Rubinsky B, Fletcher G, et al. Cryogenic protection of oocytes with antifreeze proteins. Mol Reproduct Dev, 1993, 36(4): 488-493.
|
13. |
Carpenter J F, Hansent T N. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc Natl Acad Sci U S A, 1992, 89(19): 8953-8957.
|
14. |
Amir G, Horowitz L, Rubinsky B, et al. Subzero nonfreezing cryopresevation of rat hearts using antifreeze protein I and antifreeze protein III. Cryobiology, 2004, 48(3): 273-282.
|
15. |
马庆保, 刘志东. 南极磷虾抗冻蛋白热滞活性的差示扫描量热法评价. 食品科学, 2018, 39(11): 1-7.
|
16. |
纪瑞庆, 刘爱国, 陈龙, 等. 鱼类抗冻蛋白结构与抗冻活性的关系. 食品科学, 2015, 36(5): 274-282.
|
17. |
Mao Xinfang, Liu Zhongyuan, Li Honglei, et al. Calorimetric studies on an insect antifreeze protein ApAFP752 from Anatolica polita. J Therm Anal Calorim, 2011, 104(1): 343-349.
|
18. |
张换成, 胥义. 深低温保存生物材料快速复温方法的研究进展. 中国医学物理学杂志, 2015, 32(1): 144-148.
|
19. |
Tomczak M M, Marshall C B, Gilbert J A, et al. A facile method for determining ice recrystallization inhibition by antifreeze proteins. Biochem Biophys Res Commun, 2003, 311(4): 1041-1046.
|
20. |
Cao Tingting, Zhang Yuqing. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater Sci Eng C Mater Biol Appl, 2016, 61: 940-952.
|
21. |
Rockwood D N, Preda R C, Yücel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc, 2011, 6(10): 1612-1631.
|
22. |
尉姗姗, 尹林克, 牟书勇, 等. 新疆沙冬青抗冻蛋白的提取分离及其热滞活性测定. 云南植物研究, 2007, 29(2): 251-255.
|
23. |
Stubbs C, Lipecki J, Gibson M I. Regioregular alternating polyampholytes have enhanced biomimetic ice recrystallization activity compared to random copolymers and the role of side chain versus main chain hydrophobicity. Biomacromolecules, 2017, 18(1): 295-302.
|
24. |
Jia Chunli, Huang Weining, Wu Chao, et al. Characterization and yeast cryoprotective performance for thermostable icestructuring proteins from Chinese Privet (Ligustrum Vulgare) leaves. Food Research International, 2012, 49(1): 280-284.
|
25. |
Wu Jinhong, Zhou Yanfu, Wang Shaoyun, et al. Laboratory-scale extraction and characterization of ice-binding sericin peptides. Eur Food Res Technol, 2013, 236(4): 637-646.
|
26. |
任禾盛, 许娜飞, 华泽钊. 抗冻蛋白活性的差示扫描量热测定及其吸附-抑制机制. 细胞生物学杂志, 2004, 26(4): 413-416.
|
27. |
Du N, Liu X Y, Hew C L. Ice nucleation inhibition: mechanism of antifreeze by antifreeze protein. J Biol Chem, 2003, 278(38): 36000-36004.
|
28. |
Raymond J A, DeVries A L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A, 1977, 74(6): 2589-2593.
|
29. |
Li Ling, Wu Jinhong, Zhang Li, et al. Investigation of the physiochemical properties, cryoprotective activity and possible action mechanisms of sericin peptides derived frommembrane separation. LWT, 2017, 77: 532-541.
|
30. |
Gupta D, Agrawal A, Chaudhary H, et al. Cleaner process for extraction of sericin using infrared. J Clean Prod, 2013, 52(4): 488-494.
|
31. |
周小进, 董雪. 不同脱胶方法对蚕丝性能的影响分析. 针织工业, 2013(4): 44-48.
|
32. |
Zhang D Q, Liu B, Feng D R, et al. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein. Biochem J, 2004, 377(3): 589-595.
|
33. |
Wierzbicki A, Madura J D, Salmon C, et al. Modeling studies of binding of sea raven type II antifreeze protein to ice. J Chem Inf Comput Sci, 1997, 37(6): 1006-1010.
|