1. |
Anderson J R. Cognitive psychology and its implications. 6th ed. Cotswolds: Worth Publishers, 2004: 519.
|
2. |
Lee Y C, Lin W C, Cherng F Y, et al. A visual attention monitor based on Steady-State visual evoked potential. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(3): 399-408.
|
3. |
Chun M M, Golomb J D, Turk-Browne N B. A taxonomy of external and internal attention. Annu Rev Psychol, 2011, 62(1): 73-101.
|
4. |
Debettencourt M T, Cohen J D, Lee R F, et al. Closed-loop training of attention with real-time brain imaging. Nat Neurosci, 2015, 18(3): 470-475.
|
5. |
Awh E, Vogel E K. Attention: feedback focuses a wandering mind. Nat Neurosci, 2015, 18(3): 327-328.
|
6. |
Shell J S, Vertegaal R, Skaburskis A W. EyePliances: attention-seeking devices that respond to visual attention// CHI'03 Extended Abstracts on Human Factors in Computing Systems. Lauderdale: ACM, 2003: 770-771.
|
7. |
Lee C H J, Jang C Y I, Chen T H D, et al. Attention meter: a vision-based input toolkit for interaction designers// CHI'06 Extended Abstracts on Human Factors in Computing Systems. Montréal: ACM, 2006: 1007-1012.
|
8. |
Szafir D, Mutlu B. Pay attention!: designing adaptive agents that monitor and improve user engagement// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Austin: ACM, 2012: 11-20.
|
9. |
Barry R J, Clarke A R, Johnstone S J, et al. Electroencephalogram θ/β ratio and arousal in attention-deficit/hyperactivity disorder: Evidence of independent processes. Biol Psychiatry, 2009, 66(4): 398-401.
|
10. |
Liao L D, Chen C Y, Wang I J, et al. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J Neuroeng Rehabil, 2012, 9(1): 1-12.
|
11. |
Rosenberg M D, Finn E S, Scheinost D, et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat Neurosci, 2016, 19(1): 165-171.
|
12. |
Weissman D H, Roberts K C, Visscher K M, et al. The neural bases of momentary lapses in attention. Nat Neurosci, 2006, 9(7): 971-978.
|
13. |
Chen D, Vertegaal R. Using mental load for managing interruptions in physiologically attentive user interfaces// CHI'04 Extended Abstracts on Human Factors in Computing Systems. Vienna: ACM, 2004: 1513-1516.
|
14. |
Morgan S T, Hansen J C, Hillyard S A. Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc Natl Acad Sci U S A, 1996, 93(10): 4770-4774.
|
15. |
Saupe K, Schröeger E, Andersen S K, et al. Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli. Front Hum Neurosci, 2009, 3: 1-13.
|
16. |
吴正华, 尧德中. 用稳态视觉诱发电位研究注意的选择机制. 生物物理学报, 2006, 22(6): 455-460.
|
17. |
Müller M M, Andersen S, Trujillo N J, et al. Feature-selective attention enhances color signals in early visual areas of the human brain. Proc Natl Acad Sci U S A, 2006, 103(38): 14250-14254.
|
18. |
Kelly S P, Lalor E C, Reilly R B, et al. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans Neural Syst Rehabil Eng, 2005, 13(2): 172-178.
|
19. |
Ortner R, Guger C, Prueckl R, et al. SSVEP based brain-computer interface for robot control// International Conference on Computers for Handicapped Persons. Heidelberg: Springer, 2010: 85-90.
|
20. |
Nakanishi M, Wang Y, Wang Y T, et al. A high-speed brain speller using steady-state visual evoked potentials. Int J Neural Syst, 2014, 24(6): 1450019.
|
21. |
Xu Minpeng, Xiao Xiaolin, Wang Yijun, et al. A brain-computer Interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng, 2018, 65(5): 1166-1175.
|
22. |
孙长城. 基于三维编码刺激序列的视觉 P300-Speller 诱发 ERP 研究. 天津: 天津大学, 2012.
|
23. |
Verbruggen F, Logan G D. Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci Biobehav Rev, 2009, 33(5): 647-661.
|