1. |
Mahmood U, Healy H G, Kark A, et al. Spectrum (characteristics) of patients with chronic kidney disease (CKD) with increasing age in a major metropolitan renal service. BMC Nephrol, 2017, 18(1): 372.
|
2. |
Hazzan A D, Halinski C, Agoritsas S A, et al. Epidemiology and challenges to the management of advanced CKD. Adv Chronic Kidney Dis, 2016, 23(4): 217-221.
|
3. |
Cao Xia, Wu Liuxin, Chen Zhiheng. The association between elevated serum uric acid level and an increased risk of renal function decline in a health checkup cohort in China. Int Urol Nephrol, 2018, 50(3): 517-525.
|
4. |
Sakurai M, Kobayashi J, Takeda Y, et al. Sex differences in associations among obesity, metabolic abnormalities, and chronic kidney disease in Japanese men and women. J Epidemiol, 2016, 26(8): 440-446.
|
5. |
von Stillfried S, Apitzsch J C, Ehling J A, et al. Contrast-enhanced CT imaging in patients with chronic kidney disease. Angiogenesis, 2016, 19(4): 525-535.
|
6. |
Yuan Xiaodong, Zhang Jing, Tang Ke, et al. Determination of glomerular filtration rate with CT measurement of renal clearance of iodinated contrast material versus 99mTc-DTPA dynamic imaging " gates” method: a validation study in asymmetrical renal disease. Radiology, 2017, 282(2): 552-560.
|
7. |
Zheng Xiujuan, Wei Wentao, Huang Qiu, et al. Automated region of interest detection method in scintigraphic glomerular filtration rate estimation. IEEE J Biomed Health Inform, 2019, 23(2): 787-794.
|
8. |
李繁, 莫慧, 张宁, 等. 99mTc-DTPA 肾动态显像在痛风性肾病早期诊断中的意义. 广东医学院学报, 2016, 34(4): 397-399.
|
9. |
Miftari R, Nura A, Topciu S V, et al. Impact of gate 99mTc DTPA GFR, serum creatinine and urea in diagnosis of patients with chronic kidney failure. Acta Inform Med, 2017, 25(2): 99-102.
|
10. |
Keramida G, James J M, Prescott M C. Pitfalls and limitations of radionuclide renal imaging in adults. Semin Nucl Med, 2015, 45(5): 428-439.
|
11. |
Alvarez Rodriguez S, Hevia Palacios V, Sanz Mayayo E, et al. The usefulness of contrast-enhanced ultrasound in the assessment of early kidney transplant function and complications. Diagnostics (Basel), 2017, 7(3). DOI: 10.3390/diagnostics7030053.
|
12. |
Stock E, Paepe D, Daminet S, et al. Contrast-enhanced ultrasound examination for the assessment of renal perfusion in cats with chronic kidney disease. J Vet Intern Med, 2018, 32(1): 260-266.
|
13. |
Stenberg B, Wilkinson M, Elliott S, et al. The prevalence and significance of renal perfusion defects in early kidney transplants quantified using 3D contrast enhanced ultrasound (CEUS). Eur Radiol, 2017, 27(11): 4525-4531.
|
14. |
Lee G, Jeon S, Lee S K, et al. Quantitative evaluation of renal parenchymal perfusion using contrast-enhanced ultrasonography in renal ischemia-reperfusion injury in dogs. J Vet Sci, 2017, 18(4): 507-514.
|
15. |
Wang Ling, Wu Jian, Cheng Jiafen, et al. Diagnostic value of quantitative contrast-enhanced ultrasound (CEUS) for early detection of renal hyperperfusion in diabetic kidney disease. J Nephrol, 2015, 28(6): 669-678.
|
16. |
Wang Ling, Cheng Jiafen, Sun Liping, et al. Use of contrast-enhanced ultrasound to study relationship between serum uric acid and renal microvascular perfusion in diabetic kidney disease. Biomed Res Int, 2015, 2015: 732317.
|
17. |
Cao Wei, Cui Shuang, Yang Li, et al. Contrast-enhanced ultrasound for assessing renal perfusion impairment and predicting acute kidney injury to chronic kidney disease progression. Antioxid Redox Signal, 2017, 27(17): 1397-1411.
|
18. |
Kummer T, Oh L, Phelan M B, et al. Emergency and critical care applications for contrast-enhanced ultrasound. Am J Emerg Med, 2018, 36(7): 1287-1294.
|
19. |
Wang Ling, Mohan C. Contrast-enhanced ultrasound: A promising method for renal microvascular perfusion evaluation. J Transl Int Med, 2016, 4(3, SI): 104-108.
|
20. |
Deniffel D, Boutelier T, Labani A, et al. Computed tomography perfusion measurements in renal lesions obtained by Bayesian estimation, advanced singular-value decomposition deconvolution, maximum slope, and patlak models intermodel agreement and diagnostic accuracy of tumor classification. Invest Radiol, 2018, 53(8): 477-485.
|
21. |
Jia Chongfu, Wang Zhaoqian, Sun Xixia, et al. Use of dual-source computed tomography to evaluate renal cortical perfusion in patients with essential hypertension without diabetes: preliminary results. J Comput Assist Tomogr, 2015, 39(4): 473-478.
|
22. |
徐佳佳, 闵朋, 赵年, 等. CT 灌注成像结合 CT 血管造影在缺血性肾脏病诊断中的价值. 中华实用诊断与治疗杂志, 2018, 32(7): 688-690.
|
23. |
Luk L, Steinman J, Newhouse J H. Intravenous contrast-induced nephropathy-The rise and fall of a threatening idea. Adv Chronic Kidney Dis, 2017, 24(3): 169-175.
|
24. |
Yuan Xiaodong, Zhang Jing, Quan Changbin, et al. A simplified whole-organ CT perfusion technique with biphasic acquisition: preliminary investigation of accuracy and protocol feasibility in kidneys. Radiology, 2016, 279(1): 254-261.
|
25. |
de Boer A, Leiner T, Vink E E, et al. Modified dixon-based renal dynamic contrast-enhanced MRI facilitates automated registration and perfusion analysis. Magn Reson Med, 2018, 80(1): 66-76.
|
26. |
Jiang Kai, Tang Hui, Mishra P K, et al. Measurement of murine single-kidney glomerular filtration rate using dynamic contrast-enhanced MRI. Magn Reson Med, 2018, 79(6): 2935-2943.
|
27. |
Koh T S, Bisdas S, Koh D M, et al. Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI. J Magn Reson Imaging, 2011, 34(6): 1262-1276.
|
28. |
Eikefjord E, Andersen E, Hodneland E, et al. Dynamic contrast-enhanced MRI measurement of renal function in healthy participants. Acta radiol, 2017, 58(6): 748-757.
|
29. |
Durand E. Comparison of magnetic resonance imaging with radionuclide methods of evaluating the kidney. Semin Nucl Med, 2014, 44(2): 82-92.
|
30. |
de Boer A, Hoogduin J M, Blankestijn P J, et al. 7 T renal MRI: challenges and promises. MAGMA, 2016, 29(3, SI): 417-433.
|
31. |
Yang Xin, Le Minh H, Cheng K-T, et al. Renal compartment segmentation in DCE-MRI images. Med Image Anal, 2016, 32: 269-280.
|