1. |
Xu Fei, Ji Zhong, Chen Qun, et al. Nonlinear thermoacoustic imaging based on temperature-dependent thermoelastic response. IEEE Trans Med Imaging, 2019, 38(1): 205-212.
|
2. |
Nan Hao, Liu Shiyu, Buckmaster J G, et al. Beamforming microwave-induced thermoacoustic imaging for screening applications. IEEE Trans Microw Theory Tech, 2019, 67(1): 464-474.
|
3. |
Nan Hao, Arbabian A. A programmable RF transmitter for wideband thermoacoustic spectroscopic imaging//2018 IEEE MTT-S International Microwave Symposium-IMS. Philadelphia, USA: IEEE, 2018: 1405-1408.
|
4. |
Kruger R A, Kiser W L, Reinecke D R, et al. Thermoacoustic molecular imaging of small animals. Mol Imaging, 2003, 2(2): 113-123.
|
5. |
Chi Zihui, Zhao Yuan, Yang Jinge, et al. Thermoacoustic tomography of in vivo human finger joints. IEEE Trans Biomed Eng, 2019, 66(6): 1598-1608.
|
6. |
Chi Zihui, Zhao Yuan, Huang Lin, et al. Thermoacoustic imaging of rabbit knee joints. Med Phys, 2016, 43(12): 6226-6233.
|
7. |
Zhao Yuan, Chi Zihui, Huang Lin, et al. Thermoacoustic tomography of in vivo rat brain. J Innov Opt Health Sci, 2017, 10(4, SI): 1740001.
|
8. |
Huang Lin, Li Tingting, Jiang Huabei. Technical Note: Thermoacoustic imaging of hemorrhagic stroke: A feasibility study with a human skull. Med Phys, 2017, 44(4): 1494-1499.
|
9. |
Aliroteh M S, Arbabian A. Microwave-induced thermoacoustic imaging of subcutaneous vasculature with near-field RF excitation. IEEE Trans Microw Theory Tech, 2018, 66(1): 577-588.
|
10. |
Zheng Zhu, Huang Lin, Jiang Huabei. Label-free thermoacoustic imaging of human blood vessels in vivo. Appl Phys Lett, 2018, 113(25): 253702.
|
11. |
Eckhart A T, Balmer R T, See W A, et al. Ex vivo thermoacoustic imaging over large fields of view with 108 MHz irradiation. IEEE Trans Biomed Eng, 2011, 58(8): 2238-2246.
|
12. |
Patch S K, Hull D, See W A, et al. Toward quantitative whole organ thermoacoustics with a clinical array plus one very low-frequency channel applied to prostate cancer imaging. IEEE Trans Ultrason Ferroelectr Freq Control, 2016, 63(2): 245-255.
|
13. |
Yeom Y K, Chae E Y, Kim H H, et al. Screening mammography for second breast cancers in women with history of early-stage breast cancer: factors and causes associated with non-detection. BMC Med Imaging, 2019, 19(1): 2.
|
14. |
Cui Y, Yuan C, Ji Z. A review of microwave-induced thermoacoustic imaging: Excitation source, data acquisition system and biomedical applications. J Innov Opt Health Sci, 2017, 10(4): 1730007.
|
15. |
Song Jiaxiang, Li Yanhong, Li Yuanyuan, et al. Three-dimensional model of thermoacoustic tomography with electric excitation. J Appl Phys, 2018, 124(16): 164902.
|
16. |
Xu Xueliang, Huang Lin, Ling Yan, et al. Thermoacoustic imaging of finger joints and bones: a feasibility study//2016 International Conference on Biotechnology and Medical Science. Nanjing, Jiangsu, China: World Scientific, 2016: 243-248.
|
17. |
Huang Lin, Ge Shaoli, Zheng Zhu, et al. Technical Note: design of a handheld dipole antenna for a compact thermoacoustic imaging system. Med Phys, 2019, 46(2): 851-856.
|
18. |
Ji Zhong, Ding Wenzheng, Ye Fanghao, et al. Handheld thermoacoustic scanning system based on a linear-array transducer. Ultrason Imaging, 2016, 38(4): 276-284.
|
19. |
Wen L, Yang S, Zhong J, et al. Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles. Theranostics, 2017, 7(7): 1976-1989.
|
20. |
Wang Xin, Ji Zhong, Yang Sihua, et al. Morphological-adaptive photoacoustic tomography with flexible transducer and flexible orientation light. Opt Lett, 2017, 42(21): 4486-4489.
|
21. |
Shan Tianqi, Qi Jin, Jiang M, et al. GPU-based acceleration and mesh optimization of finite-element-method-based quantitative photoacoustic tomography: a step towards clinical applications. Appl Opt, 2017, 56(15): 4426-4432.
|
22. |
Smith R A, Andrews K S, Brooks D, et al. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin, 2018, 68(4): 297-316.
|
23. |
Sahiner B, Chan H P, Roubidoux M A, et al. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology, 2007, 242(3): 716-724.
|
24. |
Foster K R, Schepps J L. Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J Microw Power, 1981, 16(2): 107-119.
|
25. |
Joines W T, Zhang Y, Li C, et al. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys, 1994, 21(4): 547-550.
|
26. |
Xu M H, Ku G, Jin X, et al. Breast cancer imaging by microwave-induced thermoacoustic tomography. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5697: 45-48.
|
27. |
Zhao Yan, Ji Zhong, Qin Baohua, et al. A thermoacoustic imaging system with variable curvature and multi-dimensional detection adapted to breast tumor screening. J Appl Phys, 2018, 124(14): 144902.
|
28. |
Huang Lin, Yao Lei, Liu Lixin, et al. Quantitative thermoacoustic tomography: Recovery of conductivity maps of heterogeneous media. Appl Phys Lett, 2012, 101(24): 244106.
|
29. |
Saraswat S, Tak J, Liang Min, et al. Towards study on thermoacoustic imaging guided focused microwave therapy for breast cancer treatment//2018 IEEE MTT-S International Microwave Symposium-IMS. Philadelphia, USA: IEEE, 2018: 953-956.
|
30. |
Mashal A, Booske J H, Hagness S C. Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: an experimental study of the effects of microbubbles on simple thermoacoustic targets. Phys Med Biol, 2009, 54(3): 641-650.
|
31. |
Fu Y, Ji Z, Ding W, et al. Thermoacoustic imaging over large field of view for three-dimensional breast tumor localization: a phantom study. Med Phys, 2014, 41(11): 110701.
|
32. |
Luo S W, Ji z, Yang S H, et al. Near-field transmission-type microwave imaging for noninvasive evaluation of electromagnetic characteristics: toward early breast tumor detection. IEEE Photonics J, 2017, 9(6): 1-10.
|
33. |
Huang Lin, Rong Jian, Yao Lei, et al. Quantitative thermoacoustic tomography for ex vivo imaging conductivity of breast tissue. Chin Phys Lett, 2013, 30(12): 124301.
|
34. |
Kruger R A, Miller K D, Reynolds H E, et al. Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz - Feasibility study. Radiology, 2000, 216(1): 279-283.
|
35. |
Ding Wenzheng, Lou Cunguang, Qiu Jieshan, et al. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice. Nanomedicine, 2016, 12(1): 235-244.
|
36. |
Qin H, Yang S, Xing D. Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG2[Gd(DTPA). Appl Phys Lett, 2012, 100(3): 033701.
|
37. |
李玉林, 唐建武, 文剑明, 等. 病理学. 北京: 人民卫生出版社, 2005: 65.
|
38. |
Wu W, Yang M, Xu M, et al. Diagnostic delay and mortality of active tuberculosis in patients after kidney transplantation in a tertiary care hospital in China. PLoS One, 2018, 13(4): e0195695.
|
39. |
Xu Y, Wang L V. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. IEEE Trans Ultrason Ferroelectr Freq Control, 2006, 53(3): 542-548.
|
40. |
贾杰. 规范乳腺癌术后上肢淋巴水肿的诊治流程. 中国康复医学杂志, 2018, 33(4): 375-378.
|
41. |
Thoeny H C, De Keyzer F, Oyen R H, et al. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology, 2005, 235(3): 911-917.
|
42. |
Horsthuis K, Bipat S, Bennink R J, et al. Inflammatory bowel disease diagnosed with US, MR, scintigraphy, and CT: meta-analysis of prospective studies. Radiology, 2008, 247(1): 64-79.
|