1. |
Fritton S P, Weinbaum S. Fluid and solute transport in bone: Flow-Induced mechanotransduction. Annu Rev Fluid Mech, 2009, 41: 347-374.
|
2. |
Smalt R, Mitchell F T, Howard R L, et al. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am J Physiol, 1997, 273(4 Pt 1): E751-E758.
|
3. |
Owan I, Burr D B, Turner C H, et al. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol, 1997, 273(3 Pt 1): C810-C815.
|
4. |
You J, Yellowley C E, Donahue H J, et al. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng, 2000, 122(4): 387-393.
|
5. |
Birmingham E, Grogan J A, Niebur G L, et al. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann Biomed Eng, 2013, 41(4): 814-826.
|
6. |
Metzger T A, Kreipke T C, Vaughan T J, et al. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng, 2015, 137(1): 011006.
|
7. |
Kawarizadeh A, Bourauel C, Jager A. Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. Eur J Orthod, 2003, 25(6): 569-578.
|
8. |
Gonzales C, Hotokezaka H, Arai Y A, et al. An in vivo 3D Micro-CT evaluation of tooth movement after the application of different force magnitudes in rat molar. Angle Orthodontist, 2009, 79(4): 703-714.
|
9. |
Ro J Y. Bite force measurement in awake rats: a behavioral model for persistent orofacial muscle pain and hyperalgesia. J Orofac Pain, 2005, 19(2): 159-167.
|
10. |
Hassumi J S, Mulinari-Santos G, da Silva Fabris A L, et al. Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. J Appl Oral Sci, 2018, 26: e20170326.
|
11. |
茹楠, 庄丽, 白玉兴. 牙齿移动过程中牙槽骨显微结构动态变化的微型CT研究. 中华口腔医学杂志, 2011, 46(4): 237-240.
|
12. |
Alikhani M, Alikhani M, Alansari S, et al. Therapeutic effect of localized vibration on alveolar bone of osteoporotic rats. PLoS One, 2019, 14(1): e0211004.
|
13. |
庄丽, 屈克勤, 周玉玲, 等. 大鼠颌骨骨皮质切开术后骨小梁三维结构的改变. 中华口腔正畸学杂志, 2016, 23(2): 77-81.
|
14. |
董晨, 于玲敏, 金光春. 显微CT下下颌骨松质骨结构的解剖学评价. 广东医学, 2017, 38(z2): 20-22.
|
15. |
Abe H, Hayashi K, Sato M. Data book on mechanical properties of living cells, tissues, and organs. Tokyo: Springer, 1996.
|
16. |
Metzger T A, Shudick J M, Seekell R, et al. Rheological behavior of fresh bone marrow and the effects of storage. J Mech Behav Biomed Mater, 2014, 40: 307-313.
|
17. |
Cattaneo P M, Dalstra M, Melsen B. Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element. Orthod Craniofac Res, 2009, 12(2): 120-128.
|
18. |
Khan J, Benoliel R, Herzberg U, et al. Bite force and pattern measurements for dental pain assessment in the rat. Neurosci Lett, 2008, 447(2/3): 175-178.
|
19. |
Kim S H, Son C N, Lee H J, et al. Infliximab partially alleviates the bite force reduction in a mouse model of temporomandibular joint pain. J Korean Med Sci, 2015, 30(5): 552-558.
|
20. |
Lu X L, Huo B, Chiang V, et al. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Mineral Res, 2012, 27(3): 563-574.
|
21. |
Donahue S W, Jacobs C R, Donahue H J. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am J Physiol Cell Physiol, 2001, 281(5): C1635-C1641.
|
22. |
Roy B, Das T, Mishra D, et al. Oscillatory shear stress induced calcium flickers in osteoblast cells. Integr Biol (Camb), 2014, 6(3): 289-299.
|
23. |
Chen N X, Ryder K D, Pavalko F M, et al. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol, 2000, 278(5): C989-C997.
|
24. |
Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem, 2006, 97(1): 56-70.
|
25. |
Kim C H, You L, Yellowley C E, et al. Oscillatory fluid flow-induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling. Bone, 2006, 39(5): 1043-1047.
|
26. |
Tan S D, De Vries T J, Kuijpers-Jagtman A M, et al. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone, 2007, 41(5): 745-751.
|
27. |
Zhang Chunxiang, Lu Yanqin, Zhang Linkun, et al. Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells. Arch Med Sci, 2015, 11(3): 638-646.
|
28. |
Bright R, Hynes K, Gronthos S, et al. Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review. J Periodontal Res, 2015, 50(2): 160-172.
|
29. |
Kook S H, Jang Y S, Lee J C. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-alpha-mediated activation of CD4+T cells. J Cell Biochem, 2011, 112(10): 2891-2901.
|