1. |
Asensio-Cubero J, Gan J Q, Palaniappan R. Multiresolution analysis over graphs for a motor imagery based online BCI game. Comput Biol Med, 2016, 68: 21-26.
|
2. |
Xu Minpeng, Qi Hongzhi, Wan Baikun, et al. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature. J Neural Eng, 2013, 10(2): 26001-26013.
|
3. |
Lotte F, Faller J, Guger C, et al. Combining BCI with virtual reality: Towards new applications and improved BCI. Berlin Springer Berlin Heidlberg, 2012: 197-220.
|
4. |
Tumanov K, Goebel R, Möckel R, et al. fNIRS-based BCI for robot control// Proceeding of the 2015 International Conference on Autonomous Agents and Multiagent Systems. Istanbul: International Foundation for Autonomous Agents and Multiagent Systems, 2015: 1953-1954.
|
5. |
Pichiorri F, Morone G, Petti M, et al. Brain-computer interface boots motor imagery practice during stroke recovery. Ann Neurol, 2015, 77(5): 851-865.
|
6. |
Bamdad M, Zarshenas H, Auais M A. Application of BCI systems in neurorehabilitation: a scoping review. Disabil Rehabil Assist Technol, 2015, 10(5): 355-364.
|
7. |
Turnip A, Hong K S, Jeong M Y. Real-time feature extraction of P300 component using adaptive nonlinear principal component analysis. Biomed Eng Online, 2011, 10(1): 83.
|
8. |
Popovich C, Staines W R. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task. Behav Brain Res, 2015, 281: 267-275.
|
9. |
Yuan Zhen, Ye J C. Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains. Front Hum Neurosci, 2013, 7: 676.
|
10. |
Ghio M, Schulze P, Suchan B, et al. Neural representations of novel objects associated with olfactory experience. Behav Brain Res, 2016, 308: 143-151.
|
11. |
Gillis M M, Garcia S, Hampstead B M. Working memory contributes to the encoding of object location associations: Support for a 3-part model of object location memory. Behav Brain Res, 2016, 311: 192-200.
|
12. |
Kim J, Chung Y G, Chung S C, et al. Decoding pressure stimulation locations on the fingers from human neural activation patterns. Neuroreport, 2016, 27(16): 1232-1236.
|
13. |
Verriotis M, Chang P, Fitzgerald M, et al. The development of the nociceptive brain. Neuroscience, 2016, 338: 207-219.
|
14. |
Tempest G D, Eston R G, Parfitt G. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study. PLoS One, 2014, 9(5): 95924.
|
15. |
León-Domínguez U, Martín-Rodríguez J F, León-Carrión J. Executive n-back tasks for the neuropsychological assessment of working memory. Behav Brain Res, 2015, 292: 167-173.
|
16. |
Naseer N, Hong K S. Decoding answers to four-choice questions using functional near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2015, 23(1): 23-31.
|
17. |
Nguyen H D, Hong K S, Shin Y I. Bundled-optode method in functional near-infrared spectroscopy. PLoS One, 2016, 11(10): 0165146.
|
18. |
Kim C K, Lee S, Koh D, et al. Development of wireless NIRS system with dynamic removal of motion artifacts. Biomed Eng Lett, 2011, 1(4): 254-259.
|
19. |
Khan M J, Hong M J, Hong K S. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front Hum Neurosci, 2014, 8: 244.
|
20. |
Piper S K, Krueger A, Koch S P, et al. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage, 2014, 85(1, SI): 64-71.
|
21. |
Bhutta M R, Hong M J, Kim Y H, et al. Single-trial lie detection using a combined fNIRS-polygraph system. Front Psychol, 2015, 6: 709.
|
22. |
Naseer N, Hong K S. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface. Neurosci Lett, 2013, 553: 84-89.
|
23. |
Nguyen H D, Hong K S. Bundled-optode implementation for 3D imaging in functional near-infrared spectroscopy. Biomed Opt Express, 2016, 7(9): 3491-3507.
|
24. |
Zafar A, Hong K S. Detection and classification of three-class initial dips from prefrontal cortex. Biomed Opt Express, 2017, 8(1): 367-383.
|
25. |
Quaresima V, Lepanto R, Ferrari M. The use of near infrared spectroscopy in sports medicine. J Sports Med Phys Fitness, 2003, 43(1): 1-13.
|
26. |
Fazli S, Mehnert J, Steinbrink J, et al. Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage, 2012, 59(1): 519-529.
|
27. |
Naseer N, Hong M J, Hong K S. Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface. Exp Brain Res, 2014, 232(2): 555-564.
|
28. |
Schudlo L C, Chau T. Single-trial classification of near-infrared spectroscopy signals arising from multiple cortical regions. Behav Brain Res, 2015, 290: 131-142.
|
29. |
Naseer N, Hong K S. fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci, 2015, 9: e3.
|
30. |
焦学军, 张朕, 姜劲, 等. 基于功能性近红外光谱技术的脑机接口. 上海交通大学学报, 2017, 51(12): 1456-1463.
|
31. |
Kaiser V, Bauernfeind G, Kreilinger A, et al. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Neuroimage, 2014, 85(Pt 1): 432-444.
|
32. |
Kirilina E, Jelzow A, Heine A, et al. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Neuroimage, 2012, 61(1): 70-81.
|
33. |
Hong K S, Santosa H. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear Res, 2016, 333: 157-166.
|
34. |
Jang K E, Tak S, Jung J, et al. Wavelet minimum description length detrending for near-infrared spectroscopy. J Biomed Opt, 2009, 14(3): 659-660.
|
35. |
Nishiyori R, Bisconti S, Ulrich B D. Motor cortex activity during functional motor skills: an fNIRS study. Brain Topography, 2016, 29(1): 42-55.
|
36. |
Cui Xu, Bray S, Reiss A L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage, 2010, 49(4): 3039-3046.
|
37. |
Swami A, Jain R. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 2012, 12(10): 2825-2830.
|
38. |
Dura-Bernal S, Zhou Xianlian, Neymotin S A, et al. Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm. Front Neurorobot, 2015, 9: 13.
|
39. |
Kocaturk M, Gulcur H O, Canbeyli R. Toward building hybrid biological/in silico neural networks for motor neuroprosthetic control. Front Neurorobot, 2015, 9: 8.
|
40. |
Power S D, Kushki A, Chau T. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: toward a three-state NIRS-BCI. BMC Res Notes, 2012, 5(1): 141.
|
41. |
苏杭. 基于大数据背景的相关系数. 电子技术与软件工程, 2018(7): 182-182.
|
42. |
宋廷山. 相关系数统计量的功能及其应用探讨——以SPSS为分析工具. 统计教育, 2008(11): 27-31.
|
43. |
陈珍珍, 罗乐勤. 统计学(精品课程立体教材系列). 北京: 科学出版社发行处出版社, 2006.
|
44. |
徐胜. 三维物体识别研究. 成都: 电子科技大学, 2010.
|
45. |
Hong K S, Naseer N, Kim Y H. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI. Neurosci Lett, 2015, 587: 87-92.
|
46. |
Hong K S, Bhutta M R, Liu Xiaolong, et al. Classification of somatosensory cortex activities using fNIRS. Behav Brain Res, 2017, 333: 225-234.
|
47. |
Vidal A C, Banca P, Pascoal A G, et al. Modulation of cortical interhemispheric interactions by motor facilitation or restraint. Neural Plasticity, 2014, 2014: 1-8.
|
48. |
Naito M, Michioka Y, Ozawa K, et al. A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrered light. IEICE Trans Inf Syst, 2007, 90(7): 1028-1037.
|
49. |
Wang Gang, Erpelding N, Davis K D. Sex differences in connectivity of the subgenual anterior cingulate cortex. Pain, 2014, 155(4): 755-763.
|
50. |
Brodoehl S, Klingner C, Witte O W. Age-dependent modulation of the somatosensory network upon eye closure. Behav Brain Res, 2016, 298(B): 52-56.
|
51. |
Wang Bitan, Zhang Ming, Bu Lingguo, et al. Posture-related changes in brain functional connectivity as assessed by wavelet phase coherence of NIRS signals in elderly subjects. Behav Brain Res, 2016, 312: 238-245.
|