1. |
Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet, 2016, 17(11): 679-692.
|
2. |
Liu Jing, Liu Tian, Wang Xiaman, et al. Circles reshaping the RNA world: from waste to treasure. Mol Cancer, 2017, 16(1): 58.
|
3. |
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37.
|
4. |
Wang Yang, Wang Zefeng. Efficient backsplicing produces translatable circular mRNAs. RNA, 2015, 21(2): 172-179.
|
5. |
Chen C Y, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995, 268(529): 415-417.
|
6. |
Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA, 2014, 20(12): 1829-1842.
|
7. |
Li Xiang, Yang Li, Chen Lingling. The biogenesis, functions, and challenges of circular RNAs. Mol Cell, 2018, 71(3): 428-442.
|
8. |
Soldner F, Jaenisch R. Stem cells, genome editing, and the path to translational medicine. Cell, 2018, 175(3): 615-632.
|
9. |
Nolta J A. Research leads to approved therapies in the new era of living medicine. Stem Cells, 2018, 36(1): 1-3.
|
10. |
Zhang Mengjun, Jia Lingfei, Zheng Yunfei. circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation. Stem Cell Reviews and Reports, 2019, 15(1): 126-138.
|
11. |
Li Xiaoyun, Peng Bojia, Zhu Xiaofeng, et al. Changes in related circular RNAs following ER beta knockdown and the relationship to rBMSC osteogenesis. Biochem Biophys Res Commun, 2017, 493(1): 100-107.
|
12. |
Maass P G, Glažar P, Memczak S, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med, 2017, 95(11): 1179-1189.
|
13. |
Cherubini A, Barilani M, Rossi R L, et al. FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Res, 2019, 47(10): 5325-5340.
|
14. |
Seo B M, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004, 364(9429): 149-155.
|
15. |
Ohta S, Yamada S, Matuzaka K, et al. The behavior of stem cells and progenitor cells in the periodontal ligament during wound healing as observed using immunohistochemical methods. J Periodontal Res, 2008, 43(6): 595-603.
|
16. |
Zheng Yunfei, Li Xiaobei, Huang Yiping, et al. The circular RNA landscape of periodontal ligament stem cells during osteogenesis. J Periodontol, 2017, 88(9): 906-914.
|
17. |
Gu Xiuge, Li Mengying, Jin Ye, et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet, 2017, 18(1): 100.
|
18. |
Li Xiaobei, Zheng Yunfei, Zheng Yan, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther, 2018, 9(1): 232.
|
19. |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
|
20. |
Kleaveland B, Shi C Y, Stefano J, et al. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell, 2018, 174(2): 350-362.
|
21. |
Piwecka M, Glazar P, Hernandez-Miranda L R, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357): eaam8526.
|
22. |
Peng Wei, Zhu Shuangxi, Wang Jin, et al. Lnc-NTF3-5 promotes osteogenic differentiation of maxillary sinus membrane stem cells via sponging miR-93-3p. Clin Implant Dent Relat Res, 2018, 20(2): 110-121.
|
23. |
Peng Wei, Zhu Shuangxi, Chen Junlan, et al. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3. Biomed Pharmacother, 2019, 109: 1709-1717.
|
24. |
Li Zehan, Li Na, Ge Xingyun, et al. Differential circular RNA expression profiling during osteogenic differentiation of stem cells from apical papilla. Epigenomics, 2019, 11(9): 1056-1073.
|
25. |
Goode D K, Obier N, Vijayabaskar M, et al. Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev Cell, 2016, 36(5): 572-587.
|
26. |
Xia Pengyan, Wang Shuo, Ye Buqing, et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-Mediated exhaustion. Immunity, 2018, 48(4): 688-701.
|
27. |
Nicolet B P, Engels S, Aglialoro F, et al. Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res, 2018, 46(16): 8168-8180.
|
28. |
Xie Fang, Zhao Yun, Wang Shida, et al. Identification, characterization, and functional investigation of circular RNAs in subventricular zone of adult rat brain. J Cell Biochem, 2019, 120(3): 3428-3437.
|
29. |
Yang Qichang, Wu Jing, Zhao Jian, et al. Circular RNA expression profiles during the differentiation of mouse neural stem cells. BMC Syst Biol, 2018, 12(Suppl 8): 128.
|
30. |
Arnaiz E, Sole C, Manterola L, et al. CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol, 2019, 58: 90-99.
|
31. |
Wang Miao, Yang Yuxi, Xu Jian, et al. CircRNAs as biomarkers of cancer: a meta-analysis. BMC Cancer, 2018, 18(1): 303.
|
32. |
Yan Ningning, Xu Haiyan, Zhang Jinnan, et al. Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells. Oncotarget, 2017, 8(56): 95704-95718.
|
33. |
Wu Yongyan, Zhang Yuliang, Niu Min, et al. Whole-transcriptome analysis of CD133+ CD144+ cancer stem cells derived from human laryngeal squamous cell carcinoma cells. Cell Physiol Biochem, 2018, 47(4): 1696-1710.
|
34. |
Li Xiaoyong, Ao Junping, Wu Ji. Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells. Oncotarget, 2017, 8(16): 26573-26590.
|
35. |
Kristensen L S, Okholm T L H, Veno M T, et al. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol, 2018, 15(2): 280-291.
|
36. |
Ruan Zhongbao, Chen Gecai, Zhang Rui, et al. Circular RNA expression profiles during the differentiation of human umbilical cord-derived mesenchymal stem cells into cardiomyocyte-like cells. J Cell Physiol, 2019, 234(9): 16412-16423.
|
37. |
Errichelli L, Modigliani S D, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun, 2017, 8: 14741.
|
38. |
Siede D, Rapti K, Gorska A A, et al. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J Mol Cell Cardiol, 2017, 109: 48-56.
|
39. |
Lei Wei, Feng Tingting, Fang Xing, et al. Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther, 2018, 9(1): 56.
|
40. |
Yu Chunying, Li T C, Wu Yiying, et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun, 2017, 8(1): 1149.
|