1. |
Yonetsu T, Jang I K. Advances in intravascular imaging: new insights into the vulnerable plaque from imaging studies. Korean Circulation Journal, 2018, 48(1): 1-15.
|
2. |
Yuan W, Kut C, Liang W, et al. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection. Scientific Reports, 2017, 7: 44909.
|
3. |
Gal-Or O, Dansingani K K, Sebrow D, et al. Inner choroidal flow signal attenuation in pachychoroid disease: optical coherence tomography angiography. Retina-The Journal of Retinal and Vitreous Diseases, 2018, 38(10): 1984-1992.
|
4. |
Gnanadesigan M, Hussain A S, White S, et al. Optical coherence tomography attenuation imaging for lipid core detection: an ex-vivo validation study. Int J Cardiovasc Imaging, 2017, 33(1): 5-11.
|
5. |
Sun P, Li Q, Li H, et al. Depth-resolved physiological response of retina to transcorneal electrical stimulation measured with optical coherence tomography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(5): 905-915.
|
6. |
Abdolmanafi A, Duong L, Dahdah N, et al. Characterization of coronary artery pathological formations from OCT imaging using deep learning. Biomed Opt Express, 2018, 9(10): 4936-4960.
|
7. |
Liu S, Sotomi Y, Eggermont J, et al. Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images. J Biomed Opt, 2017, 22(9): 096004.
|
8. |
Smith G T, Dwork N, O'Connor D, et al. Automated,depth-resolved estimation of the attenuation coefficient from optical coherence tomography data. IEEE Trans Med Imaging, 2015, 34(12): 2592-2602.
|
9. |
董昕, 陈思佳, 李军. 基于压缩感知和散斑相关法的散射介质成像方法研究. 激光生物学报, 2019, 28(1): 64-71.
|
10. |
Nicholas D, Smith G T, Theodore L, et al. Automatically determining the confocal parameters from OCT B-scans for quantification of the attenuation coefficients. IEEE Trans Med Imaging, 2019, 38(1): 261-268.
|
11. |
Stefan S, Jeong K S, Polucha C, et al. Determination of confocal profile and curved focal plane for OCT mapping of the attenuation coefficient. Biomed Opt Express, 2018, 9(10): 5084-5099.
|
12. |
Wang S, Singh M, Tran T T, et al. Biomechanical assessment of myocardial infarction using optical coherence elastography. Biomed Opt Express, 2018, 9(2): 728.
|
13. |
Qu Y, Ma T, He Y, et al. Miniature probe for mapping mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography, 2017: 4731.
|
14. |
Kennedy B F, Kennedy K M, Oldenburg A L, et al. Optical coherence elastography//Drexler W, Fujimoto J G. Optical Coherence Tomography, Springer International Publishing Switzerland, 2015: 1007-1054.
|
15. |
Zaitsev V Y, Matveyev A L, Matveev L A, et al. Optical coherence elastography for strain dynamics measurements in laser correction of cornea shape. J Biophotonics, 2017, 10(11): 1450-1463.
|
16. |
Chau A H, Chan R C, Shishkov M, et al. Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann Biomed Eng, 2004, 32(11): 1494-1503.
|
17. |
Chan R C, Chau A H, Karl W C, et al. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt Express, 2004, 12(19): 4558-4572.
|
18. |
Khalil A S, Chan R C, Chau A H, et al. Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo Soft tissue. Ann Biomed Eng, 2005, 33(11): 1631-1639.
|
19. |
Elahi S, Gu S, Thrane L, et al. Complex regression Doppler optical coherence tomography. J Biomed Opt, 2018, 23(4): 1-8.
|
20. |
Shin P, Choi W J, Joo J Y, et al. Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography. Journal of Cerebral Blood Flow & Metabolism, 2019, 39(10): 1983-1994.
|
21. |
Jing J C, Chen J J, Chou L, et al. Visualization and detection of ciliary beating pattern and frequency in the upper airway using phase resolved doppler optical coherence tomography. Sci Rep, 2017, 7(1): 8522.
|
22. |
钱婕. 基于相位解析多普勒光相干层析成像的流速测量研究. 江苏, 2017.
|
23. |
潘柳华, 张向阳, 李中梁, 等. 基于光声-光学相干层析成像的血流测量技术. 中国激光, 2018, 45(6): 224-230.
|
24. |
孟婕. 多普勒光学相干层析成像方法与应用研究. 浙江, 2010.
|
25. |
杜宜纲, 刘德杰, 沈莹莹, 等. 血管壁面剪切应力的测量及其临床研究进展. 中国生物医学工程学报, 2018, 37(5): 593-605.
|
26. |
Athanasiou L, Nezami F R, Galon M Z, et al. Optimized computer-aided segmentation and 3D REconstruction using intracoronary optical coherence tomography. IEEE J Biomed Health Inform, 2018, 22(4): 1168-1176.
|
27. |
Migliori S, Chiastra C, Bologna M, et al. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images. Medical Engineering and Physics, 2017, 47: 105-116.
|
28. |
Leiknes T, Fortunato L, Qamar A, et al. In-situ assessment of biofilm formation in submerged membrane system using optical coherence tomography and computational fluid dynamics. Journal of Membrane Science, 2017, 521: 84-94.
|
29. |
Kelsey L, Schultz C, Miller K, et al. The effects of geometric variation from OCT-derived 3D reconstructions on wall shear stress in a patient-specific coronary artery//Wittek A, Joldes G, Nielsen P M F, et al. Computational Biomechanics for Medicine: From Algorithms to Models and Applications. Springer, 2017: 1-13.
|
30. |
房兴锐, 吴剑胜, 郭攸胜, 等. 冠脉造影术、FFR 技术及 FD-OCT 评估的冠脉临界病变患者预后的比较. 心血管康复医学杂志, 2018, 27(3): 293-296.
|
31. |
Matsuo Y, Higashioka D, Ino Y, et al. Association of hemodynamic severity with plaque vulnerability and complexity of coronary artery stenosis:a combined optical coherence tomography and fractional flow reserve study. JACC Cardiovasc Imaging, 2019, 12(6): 1103-1105.
|