1. |
彭亮, 侯增广, 王晨, 等. 康复辅助机器人及其物理人机交互方法. 自动化学报, 2018, 44(11): 2000-2010.
|
2. |
崔立军, 鲍勇, 陈昕, 等. 中国康复临床实践指南的质量评价. 中国循证医学杂志, 2019, 19(6): 723-728.
|
3. |
Li W F, Hu X Y, Gravina R, et al. A neuro-fuzzy fatigue-tracking and classification system for wheelchair users. IEEE Access, 2017, 5: 19420-19431.
|
4. |
Shahmoradi S, Zare A, Behzadipour S. Fatigue status recognition in a post-stroke rehabilitation exercise with sEMG signal//24th National Iranian Conference on Biomedical Engineering/2nd International Iranian Conference on Biomedical Engineering (ICBME). Tehran: IEEE, 2017: 162-166.
|
5. |
谢平, 刘欢, 王磊磊, 等. 基于脑肌电反馈的虚拟康复训练系统设计. 仪器仪表学报, 2018, 39(1): 250-257.
|
6. |
于亚萍, 孙立宁, 张峰峰, 等. 基于小波变换的多特征融合sEMG模式识别. 传感技术学报, 2016, 29(4): 512-518.
|
7. |
徐国政, 宋爱国, 高翔, 等. 基于焦虑情绪与混杂控制的机器人辅助临床康复实验. 仪器仪表学报, 2017, 38(10): 2364-2372.
|
8. |
Mei Z N, Gu X, Chen W, et al. Automatic atrial fibrillation detection based on heart rate variability and spectral features. IEEE Access, 2018, 6: 53566-53575.
|
9. |
Berkaya S K, Uysal A K, Gunal E S, et al. A survey on ECG analysis. Biomed Signal Process Control, 2018, 43: 216-235.
|
10. |
Zhang Z Q, Ji L Y, Huang Z P, et al. Adaptive information fusion for human upper limb movement estimation. IEEE Trans Syst Man Cybern, 2012, 42(5): 1100-1108.
|
11. |
Zhao L N, Liu C Y, Wei S S, et al. Enhancing detection accuracy for clinical heart failure utilizing pulse transit time variability and machine learning. IEEE Access, 2019, 7: 17716-17724.
|
12. |
Aly H I, Youssef S, Fathy C. Hybrid brain computer interface for movement control of upper limb prostheses//International Conference on Biomedical Engineering and Applications (ICBEA). Funchal: IEEE, 2018: 86-91.
|
13. |
Baumgartner C, Koren J P, Rothmayer M. Automatic computer-based detection of epileptic seizures. Front Neurol, 2018, 9: 1-9.
|
14. |
Astorino T A, Allen R P, Roberson D W, et al. Attenuated RPE and leg pain in response to short-term high-intensity interval training. Physiol Behav, 2012, 105(2): 402-407.
|
15. |
Cui C K, Blan G B, Hou Z G, et al. A multimodal framework based on integration of cortical and muscular activities for decoding human intentions about lower limb motions. IEEE Trans Biomed Circuits Syst, 2017, 11(4): 889-899.
|
16. |
任斌斌, 谭海燕, 马成群, 等. 基于白噪声分离的集合经验模态分解心电信号去噪方法研究. 生物医学工程学杂志, 2016, 33(2): 221-226.
|
17. |
Kuthe C D, Uddanwadiker R V, Ramteke A A. Surface electromyography based method for computing muscle strength and fatigue of biceps brachii muscle and its clinical implementation. Inform Med Unlocked, 2018, 12: 34-43.
|
18. |
Liu J K, Yin L Y, He C G, et al. Multiscale autoregressive model-based electrocardiogram identification method. IEEE Access, 2018, 6: 18251-18263.
|
19. |
李昕, 蔡二娟, 田彦秀, 等. 一种改进脑电特征提取算法及其在情感识别中的应用. 生物医学工程学杂志, 2017, 34(4): 510-528.
|
20. |
Amin S U, Alsulaiman M, Muhammad G, et al. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gener Comput Syst, 2019, 101: 542-554.
|
21. |
Melgani F, Bazi Y. Classification of electro-cardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inform Technol Biomed, 2008, 12(5): 667-677.
|
22. |
Liu C Y, Zhang X Y, Zhao L N, et al. Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system. IEEE Internet of Things J, 2019, 6(2): 1363-1374.
|
23. |
Zhan Y F, Yao H X, Liu Y, et al. Network-based statistic show aberrant functional connectivity in Alzheimer’s disease. IEEE J Sel Top Signal Process, 2016, 10(7): 1182-1188.
|
24. |
Wu Q, Mao J F, Wei C F, et al. Hybrid BF-PSO and fuzzy support vector machine for diagnosis of fatigue status using EMG signal features. Neurocomputing, 2015, 173(3): 483-500.
|
25. |
Karthick P A, Ghosh D M, Ramakrishnan S. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Comput Meth Prog Bio, 2018, 154: 45-56.
|