As a novel technology, wearable physiological parameter monitoring technology represents the future of monitoring technology. However, there are still many problems in the application of this kind of technology. In this paper, a pilot study was conducted to evaluate the quality of electrocardiogram (ECG) signals of the wearable physiological monitoring system (SensEcho-5B). Firstly, an evaluation algorithm of ECG signal quality was developed based on template matching method, which was used for automatic and quantitative evaluation of ECG signals. The algorithm performance was tested on a randomly selected 100 h dataset of ECG signals from 100 subjects (15 healthy subjects and 85 patients with cardiovascular diseases). On this basis, 24-hour ECG data of 30 subjects (7 healthy subjects and 23 patients with cardiovascular diseases) were collected synchronously by SensEcho-5B and ECG Holter. The evaluation algorithm was used to evaluate the quality of ECG signals recorded synchronously by the two systems. Algorithm validation results: sensitivity was 100%, specificity was 99.51%, and accuracy was 99.99%. Results of controlled test of 30 subjects: the median (Q1, Q3) of ECG signal detected by SensEcho-5B with poor signal quality time was 8.93 (0.84, 32.53) minutes, and the median (Q1, Q3) of ECG signal detected by Holter with poor signal quality time was 14.75 (4.39, 35.98) minutes (Rank sum test, P=0.133). The results show that the ECG signal quality algorithm proposed in this paper can effectively evaluate the ECG signal quality of the wearable physiological monitoring system. Compared with signal measured by Holter, the ECG signal measured by SensEcho-5B has the same ECG signal quality. Follow-up studies will further collect physiological data of large samples in real clinical environment, analyze and evaluate the quality of ECG signals, so as to continuously optimize the performance of the monitoring system.
Citation: HAN Ning, LAN Ke, ZHANG Yuezhou, WAN Tao, ZHANG Zhengbo, CAO Deshen, YAN Wei. Study on the quality evaluation of electrocardiogram signal in wearable physiological monitoring system. Journal of Biomedical Engineering, 2021, 38(1): 131-137. doi: 10.7507/1001-5515.201909012 Copy