1. |
Zhang J, Lu S, Wang X, et al. Automatic identification of fungi in microscopic leucorrhea images. J Opt Soc Am A Opt Image Sci Vis, 2017, 34(9): 1484-1489.
|
2. |
Hakakha M M, Davis J, Korst L M, et al. Leukorrhea and bacterial vaginosis as in-office predictors of cervical infection in high-risk women. Obstet Gynecol, 2002, 100(4): 808-812.
|
3. |
Ushizima D M, Lorena A C, De Carvalho A. Support vector machines applied to white blood cell recognition// International Conference on Hybrid Intelligent Systems. Rio de Janeiro, Brazil: IEEE, 2005: 6.
|
4. |
Na L, Chris A, Mulyawan B. A combination of feature selection and co-occurrence matrix methods for leukocyte recognition system. Journal of Software Engineering and Applications, 2013, 5(12): 101-106.
|
5. |
Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med, 2014, 62(3): 179-191.
|
6. |
Prinyakupt J, Pluempitiwiriyawej C. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. Biomed Eng Online, 2015, 14(1): 63.
|
7. |
Shirazi S H, Umar A I, Naz S, et al. Efficient leukocyte segmentation and recognition in peripheral blood image. Technol Health Care, 2016, 24(3): 335-347.
|
8. |
Smirnov E A, Timoshenko D M, Andrianov S N. Comparison of regularization methods for imagenet classification with deep convolutional neural networks. Aasri Procedia, 2014, 6: 89-94.
|
9. |
Mohamed S T, Ebeid H M, Hassanien A E, et al. Optimized feed forward neural network for microscopic white blood cell images classification// International Conference on Advanced Machine Learning Technologies and Applications. Cairo: Springer, 2019: 758-767.
|
10. |
钟亚, 张静, 肖峻. 基于卷积神经网络的白带中白细胞的自动检测. 中国生物医学工程学报, 2018, 37(2): 163-168.
|
11. |
Liu B, Ferrari V. Active learning for human pose estimation// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4363-4372.
|
12. |
Zhou Z, Shin J, Zhang L, et al. Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7340-7351.
|
13. |
Wang Z, Du B, Zhang L, et al. On gleaning knowledge from multiple domains for active learning// Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne: AAAI, 2017: 3013-3019.
|
14. |
Andersson O, Wzorek M, Doherty P. Deep learning quadcopter control via risk-aware active learning// Thirty-First AAAI Conference on Artificial Intelligence. California: AAAI Press, 2017: 3812-3818.
|
15. |
Sener O, Savarese S. Active learning for convolutional neural networks: A core-set approach. arXiv preprint arXiv, 2017: 1.
|
16. |
Shen Y, Yun H, Lipton Z C, et al. Deep active learning for named entity recognition. arXiv preprint arXiv, 2017: 252-256.
|
17. |
Huang S J, Zhao J W, Liu Z Y. Cost-effective training of deep CNNs with active model adaptation// ACM Press the 24th ACM SIGKDD International Conference. London: Knowledge Discovery & Data Mining, 2018: 1580-1588.
|
18. |
Hua G, Long C, Yang M, et al. Collaborative active visual recognition from crowds: A distributed ensemble approach. IEEE Trans Pattern Anal Mach Intell, 2017: 1-1.
|
19. |
Zhang S, Yin J, Guo W. Pool-based active learning with query construction. Advances in Intelligent & Soft Computing, 2011, 122: 13-22.
|
20. |
Vijayanarasimhan S, Grauman K. Large-scale live active learning: Training object detectors with crawled data and crowds. Int J Comput Vis, 2014, 108(1-2): 97-114.
|
21. |
Sankar S, Bartoli A. Model-based active learning to detect an isometric deformable object in the wild with a deep architecture. Computer Vision and Image Understanding, 2018, 171: 69-82.
|
22. |
Li J, Liang X, Shen S M, et al. Scale-aware fast R-CNN for pedestrian detection. IEEE Trans Multimedia, 2017, 20(4): 985-996.
|
23. |
Meng R, Rice S G, Wang J, et al. A fusion steganographic algorithm based on faster R-CNN. Computers Materials Continua, 2018, 55(1): 1-16.
|
24. |
Picon A, Alvarez-Gila A, Seitz M, et al. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers and Electronics in Agriculture, 2019, 161: 280-290.
|