1. |
Silveira M, Marques J. Boosting Alzheimer diseasediagnosis using PET images// 2010 20th International Conference on Pattern Recognition (ICPR). Cancun: IEEE, 2010: 2556–2559.
|
2. |
Liu Siqi, Liu Sidong, Cai Weidong, et al. Early diagnosis of Alzheimer's disease with deep learning// 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). Beijing: IEEE, 2014: 1015-1018.
|
3. |
Patterson C. World Alzheimer Report 2018 – state of the art of dementia research: New frontiers. London: Alzheimer's Disease International (ADI), 2018.
|
4. |
滕羽鸥, 时晶, 曹天雨. 丁苯酞软胶囊治疗阿尔茨海默病的有效性和安全性的Meta分析. 中国循证医学杂志, 2019, 19(12): 1446-1452.
|
5. |
Jack C R Jr, Albert M S, Knopman D S, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 2011, 7(3): 257-262.
|
6. |
Liu Feng, Wee C Y, Chen Huafu, et al. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification. Neuroimage, 2014, 84: 466-475.
|
7. |
Bron E E, Smits M, Van Der Filer W M, et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage, 2015, 111: 562-579.
|
8. |
Salvatore C, Cerasa A, Battista P, et al. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach. Front Neurosci, 2015, 9: 307.
|
9. |
Feng Chiyu, Elazab A, Yang Peng, et al. Deep learning framework for Alzheimer's disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access, 2019, 7: 63605-63618.
|
10. |
Tong T, Wolz R, Gao Q, et al. Multiple instance learning for classification of dementia in brain MRI. Med Image Anal, 2014, 18(5): 808-818.
|
11. |
Hosseini-Asl E, Keynton R, El-Baz A. Alzheimer's disease diagnostics by adaptation of 3D convolutional network// 2016 IEEE International Conference on Image Processing (ICIP). Phoenix: IEEE, 2016: 126-130.
|
12. |
Li Fan, Liu Manhua, Alzheimer’s Disease Neuroimaging Initiative, et al. Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks. Comput Med Imaging Graph, 2018, 70: 101-110.
|
13. |
Huang Gao, Liu Zhuang, Van Der Maaten L, et al. Densely connected convolutional networks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii: IEEE, 2017: 4700-4708.
|
14. |
曾安, 贾龙飞, 潘丹, 等. 基于卷积神经网络和集成学习的阿尔茨海默症早期诊断. 生物医学工程学杂志, 2019, 36(5): 711-719.
|
15. |
Wang ShuiHua, Phillips P, Sui Yuxiu, et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. Comput Med Imaging Graph, 2018, 42(5): 85.
|
16. |
Spasov S, Passamonti L, Duggento A, et al. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. NeuroImage, 2019, 189: 276-287.
|
17. |
Gupta A, Maida A, Ayhan M. Natural image bases to represent neuroimaging data// International Conference on Machine Learning (ICML). Atlanta: IMLS, 2013: 987-994.
|
18. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition// Proceedings of the Internation Conference on Learning Representations (ICLR). San Diego: ICLR, 2015: 1-14.
|
19. |
Korolev S, Safiullin A, Belyaev M, et al. Residual and plain convolutional neural networks for 3D brain MRI classification// IEEE International Symposium on Biomedical Imaging (ISBL). Melbourne: IEEE, 2017: 835-838.
|
20. |
Young J M. Probabilistic prediction of Alzheimer’s disease from multimodal image data with Gaussian process. London: University of London, 2015.
|
21. |
Fan Lingzhong, Li Hai, Zhuo Junjie, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex, 2016, 26(8): 3508-3526.
|
22. |
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural network. J Mach Learn Res, 2010, 9: 249-256.
|
23. |
Kingma D P, Ba J L. Adam: A method for stochastic optimization. arXiv preprint arXiv, 2014: 1412.6980.
|
24. |
Yang Wenlu, Lui R L M, Gao Jiahong, et al. Independent component analysis-based classification of Alzheimer's disease MRI data. J Alzheimers Dis, 2011, 24(4): 775-783.
|
25. |
Batmanghelich N, Taskar B, Davatzikos C. A general and unifying framework for feature construction, in image-based pattern classification// International Conference on Information Processing in Medical Imaging (IPMI). Berlin: Springer, 2009: 423-434.
|
26. |
李书通, 肖斌, 李伟生, 等. 基于3D-PCANet的阿尔兹海默病辅助诊断. 计算机科学, 2018(S1): 140-142, 156.
|
27. |
Xia Mingrui, Wang Jinhui, He Yong. BrainNet Viewer: a network visualization tool for human brain connectomics. PloS One, 2013, 8(7): e68910.
|
28. |
Aderghal K, Benois-Pineau J, Afdel K, et al. FuseMe: Classification of sMRI images by fusion of Deep CNNs in 2D+ϵ projections// International Workshop on Content-based Multimedia Indexing (CBMI). Firenze: ACM, 2017: 1-7.
|
29. |
Ulep M G, Saraon S K, McLea S. Alzheimer disease. JNP-J Nurse Pract, 2018, 14(3): 129-135.
|