1. |
Zhang Y S, Yue K, Aleman J A, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng, 2017, 45(1): 148-163.
|
2. |
Culenova M, Bakos D, Ziaran S, et al. Bioengineered scaffolds as substitutes for grafts for urethra reconstruction. Materials (Basel), 2019, 12(20): 3449.
|
3. |
Angulo J C, Gómez R G, Nikolavsky D. Reconstruction of membranous urethral strictures. Curr Urol Rep, 2018, 19(6): 37.
|
4. |
Fine R, Reda E F, Zelkovic P, et al. Tunneled buccal mucosa tube grafts for repair of proximal hypospadias. Journal of Urology, 2015, 193(5): 1813-1817.
|
5. |
Li C L, Liao W B, Yang S X, et al. Urethral reconstruction using bone marrow mesenchymal stem cell-and smooth muscle cell-seeded bladder acellular matrix. Transplant Proc, 2013, 45(9): 3402-3407.
|
6. |
Yang H, Chen B, Deng J, et al. Characterization of rabbit urine-derived stem cells for potential application in lower urinary tract tissue regeneration. Cell Tissue Res, 2018, 374(2): 303-315.
|
7. |
Adamowicz J, Kuffel B, Van Breda S V, et al. Reconstructive urology and tissue engineering: converging developmental paths. J Tissue Eng Regen Med, 2019, 13(3): 522-533.
|
8. |
Vukicevic M, Mosadegh B, Min J K, et al. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging, 2017, 10(2): 171-184.
|
9. |
VeDepo M C, Buse E E, Paul A, et al. Non-physiologic bioreactor processing conditions for heart valve tissue engineering. Cardiovasc Eng Technol, 2019, 10(4): 628-637.
|
10. |
Demirtaş T T, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication, 2017, 9(3): 035003.
|
11. |
Cho H, Gao Jieming, Kwon G S. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. J Control Release, 2016, 240: 191-201.
|
12. |
Pal A, Pathak C, Synthesis V B. Characterization and application of biodegradable polymer grafted novel bioprosthetic tissue. J Biomater Sci Polym Ed, 2018, 29(3): 217-235.
|
13. |
Asiri A M, Marwani H M, Khan S B, et al. Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. Int J Nanomedicine, 2014, 9: 5533-5539.
|
14. |
Kim E J, Yoon S J, Yeo G D, et al. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration. Biomed Mater, 2009, 4(5): 055001.
|
15. |
Abay A N, Gürel P G, Torun K G. Fibrous bone tissue engineering scaffolds prepared by wet spinning of PLGA. Turk J Biol, 2019, 43(4): 235-245.
|
16. |
Rizzi M, Migliario M, Rocchetti V, et al. Epiregulin-loaded PLGA nanoparticles increase human keratinocytes proliferation: preliminary data. Eur Rev Med Pharmacol Sci, 2016, 20(12): 2484-2490.
|
17. |
Eberli D, Freitas F L, Atala A, et al. Composite scaffolds for the engineering of hollow organs and tissues. Methods, 2009, 47(2): 109-115.
|
18. |
Xu F, Wang Y, Jiang X, et al. Effects of different biomaterials: comparing the bladder smooth muscle cells on waterborne polyurethane or poly-lactic-co-glycolic acid membranes. Kaohsiung J Med Sci, 2012, 28(1): 10-15.
|
19. |
Waheed S, Cabot J M, Macdonald N P, et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip, 2016, 16(11): 1993-2013.
|
20. |
Lee H, Nguyen N H, Hwang S I, et al. Personalized 3D kidney model produced by rapid prototyping method and its usefulness in clinical applications. Int Braz J Urol, 2018, 44(5): 952-957.
|
21. |
Hokmabad V R, Davaran S, Ramazani A, et al. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed, 2017, 28(16): 1797-1825.
|
22. |
Ong C S, Yesantharao P, Huang Chenyu, et al. 3D bioprinting using stem cells. Pediatr Res, 2018, 83(1-2): 223-231.
|
23. |
Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues. Biotechnol Adv, 2016, 34(4): 422-434.
|
24. |
Isaacson A, Swioklo S, Connon C J. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res, 2018, 173: 188-193.
|
25. |
Hu X, Man Y, Li W, et al. 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers (Basel), 2019, 11(10): 1601.
|
26. |
Biazar E, Najafi S M, Heidari K S, et al. 3D bio-printing technology for body tissues and organs regeneration. J Med Eng Technol, 2018, 42(3): 187-202.
|
27. |
Hong N, Yang G H, Lee J, et al. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater, 2018, 106(1): 444-459.
|
28. |
Zhang Q, Nguyen P D, Shi S, et al. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep, 2018, 8(1): 6634.
|
29. |
Jin Yipeng, Xu Yongde, Wu Yuanyi, et al. Corrigendum: microtissues enhance smooth muscle differentiation and cell viability of hADSCs for three dimensional bioprinting. Front Physiol, 2017, 8: 534.
|
30. |
Habib A, Sathish V, Mallik S, et al. 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials (Basel), 2018, 11(3): 454.
|
31. |
Zhou Yufeng. The application of ultrasound in 3D bio-printing. Molecules, 2016, 21(5): E590.
|
32. |
Zhang X, Zhang Y. Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys, 2015, 72(3): 777-782.
|
33. |
Osman N I, Hillary C, Bullock A J, et al. Tissue engineered buccal mucosa for urethroplasty: progress and future directions. Adv Drug Deliv Rev, 2015, 82-83: 69-76.
|
34. |
Gu Qi, Hao Jie, Lu Yangjie, et al. Three-dimensional bio-printing. Sci China Life Sci, 2015, 58(5): 411-419.
|
35. |
Yeung E, Fukunishi T, Bai Yang, et al. Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo. J Tissue Eng Regen Med, 2019, 13(11): 2031-2039.
|
36. |
Paul K, Darzi S, McPhee G, et al. 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Acta Biomater, 2019, 97: 162-176.
|