1. |
Stawiaski J, Decenciere E, Bidault F. Interactive liver tumor segmentation using graph-cuts and watershed//11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2008), New York: Springer, 2008.
|
2. |
Smeets D, Loeckx D, Stijnen B, et al. Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification. Med Image Anal, 2010, 14(1): 13-20.
|
3. |
Li Bingnan, Chui C K, Chang S, et al. A new unified level set method for semi-automatic liver tumor segmentation on contrast-enhanced CT images. Expert Syst Appl, 2012, 39(10): 9661-9668.
|
4. |
Li C, Wang X, Eberl S, et al. A likelihood and local constraint level set model for liver tumor segmentation from CT volumes. IEEE Trans Biomed Eng, 2013, 60(10): 2967-2977.
|
5. |
Zhang Xing, Tian Jie, Xiang Dehui, et al. Interactive liver tumor segmentation from CT scans using support vector classification with watershed//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston: IEEE, 2011: 6005-6008.
|
6. |
Evgeniou T, Pontil M. Support vector machines: theory and applications//Proceedings of the 1999 Advanced Course on Artificial Intelligence, Berlin: Springer, 1999: 249-257.
|
7. |
Li W. Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. Journal of Computer and Communications, 2015, 3(11): 146.
|
8. |
Li X, Chen H, Qi X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging, 2018, 37(12): 2663-2674.
|
9. |
Bi L, Kim J, Kumar A, et al. Automatic liver lesion detection using cascaded deep residual networks, arXiv preprint, 2017. arXiv: 1704.02703.
|
10. |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016: 770-778.
|
11. |
Gruber N, Antholzer S, Jaschke W, et al. A joint deep learning approach for automated liver and tumor segmentation, arXiv preprint, 2019. arXiv: 1902.07971.
|
12. |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation//International Conference on Medical image computing and computer-assisted intervention, Munich: Springer, 2015: 234-241.
|
13. |
Dey R, Hong Y. Hybrid cascaded neural network for liver lesion segmentation, arXiv preprint, 2019. arXiv: 1909.04797.
|
14. |
Deng Z, Guo Q, Zhu Z. Dynamic regulation of level set parameters using 3D convolutional neural network for liver tumor segmentation. J Healthc Eng, 2019: 4321645.
|
15. |
Lu Fang, Wu Fa, Hu Peijun, et al. Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg, 2017, 12(2): 171-182.
|
16. |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets//Advances in neural information processing systems, Montreal: NIPS, 2014: 2672-2680.
|
17. |
Gauthier J. Conditional generative adversarial nets for convolutional face generation. Class Project for Stanford CS231N: Convolutional Neural Networks for Visual Recognition, Winter Semester, 2014, 2014(5): 2.
|
18. |
Isola P, Zhu Junyan, Zhou Tinghui, et al. Image-to-Image translation with conditional adversarial networks//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii: IEEE, 2017: 5967-5976.
|
19. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston: IEEE, 2015: 3431-3440.
|
20. |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation//International Conference on Medical Image Computing and Computer-Assisted Intervention, Greece: Springer, 2016: 424-432.
|
21. |
Zhou Zongwei, Siddiquee M M R, Tajbakhsh N, et al. Unet++: a nested u-net architecture for medical image segmentation// Stoyanov D. et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA). Springer, 2018: 3-11.
|
22. |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv preprint, 2015. arXiv: 1502.03167.
|
23. |
Wu Y, He K. Group normalization//Proceedings of the European Conference on Computer Vision(ECCV), Munich: IEEE, 2018: 3-19.
|
24. |
Moore R C, DeNero J. L1 and L2 regularization for multiclass hinge loss models//Symposium on Machine Learning in Speech and Language Processing, Bellevue: ISCA, 2013. CiteSeerX. psu: 10.1. 1.296. 5923.
|
25. |
Tustison N J, Gee J C. Introducing dice, jaccard, and other label overlap measures to ITK, Insight J, 2009. http://hdl.handle.net/10380/3141.
|
26. |
Yushkevich P A, GAO Yang, Gerig G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images//2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Florida: IEEE, 2016: 3342-3345.
|
27. |
Yushkevich P A, Gerig G. ITK-SNAP: an intractive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images. IEEE Pulse, 2017, 8(4): 54-57.
|
28. |
Kingma D P, Ba J. Adam: a method for stochastic optimization, arXiv preprint, 2014. arXiv: 1412.6980.
|
29. |
LeCun Y, Bengio Y, Hinton G. Deep learning. nature, 2015, 521(7553): 436-444.
|
30. |
Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV), Stanford: IEEE, 2016: 565-571.
|