1. |
郑洁琼. 生物医学文本中实体关系抽取的研究. 大连: 大连理工大学, 2017.
|
2. |
Munkhdalai T, Liu F, Yu H. Clinical relation extraction toward drug safety surveillance using electronic health record narratives: Classical learning versus deep learning. JMIR Public Health Surveill, 2018, 4(2): e29.
|
3. |
Luo Y, Cheng Y, Uzuner Ö, et al. Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes. J Am Med Inform Assoc, 2017, 25(1): 93-98.
|
4. |
He B, Guan Y, Dai R. Classifying medical relations in clinical text via convolutional neural networks. Artif Intell Med, 2019, 93: 43-49.
|
5. |
Luo Y. Recurrent neural networks for classifying relations in clinical notes. J Biomed Inform, 2017, 72: 85-95.
|
6. |
Lin Y, Shen S, Liu Z, et al. Neural relation extraction with selective attention over instances// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: Association for Computational Linguistics, 2016, 1: 2124-2133.
|
7. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Advances in Neural Information Processing Systems, 2017: 5998-6008.
|
8. |
俞雪歆, 张伟. 中国中老年糖尿病患者卫生可及性现状及其影响因素研究. 中国循证医学杂志, 2019, 19(6): 645-650.
|
9. |
任明, 孙晓, 王美娜, 等. 中国人糖尿病前期致病危险因素的系统评价. 中国循证医学杂志, 2019, 19(2): 140-146.
|
10. |
Yoon K. Convolutional neural networks for sentence classification// Proceeding of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha: Conference on Empirical Methods in Natural Language Processing, 2014: 1746-1751.
|
11. |
Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. arXiv: 2013: 1310.4546v1.
|
12. |
Zeng D, Liu K, Lai S, et al. Relation classification via convolutional deep neural network// Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. Dublin: International Conference on Computational Linguistics, 2014: 2335-2344.
|
13. |
Miotto R, Li L, Kidd B A, et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep, 2016, 6(1): 1-10.
|
14. |
Ford E, Carroll J A, Smith H E, et al. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc, 2016, ; 23(5): 1007-1015.
|
15. |
杨锦锋, 关毅, 何彬, 等. 中文电子病历命名实体和实体关系语料库构建. 软件学报, 2016, 27(11): 2725-2746.
|
16. |
赵芳芳. 面向中文电子病历的词性标注技术研究. 哈尔滨: 哈尔滨工业大学, 2014.
|
17. |
杨锦峰, 于秋滨, 关毅, 等. 电子病历命名实体识别和实体关系抽取研究综述. 自动化学报, 2014, 40(8): 1537-1562.
|
18. |
Campos D, Matos S, Oliveira J L. Biomedical named entity recognition: A survey of machine-learning tools// Sakurai S. Theory and Applications for Advanced Text Mining: InTech, 2012: 175-195.
|
19. |
Zhang Dongxu, Wang Dong. Relation classification via recurrent neural network. ArXiv: 2015: 1508.01006v2.
|
20. |
Nguyen T H, Grishman R. Relation extraction: Perspective from convolutional neural networks// Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing. Denver: Workshop on Vector Space Modeling for Natural Language Processing, 2015: 39-48.
|
21. |
Dong X, Qian L, Guan Y, et al. A multiclass classification method based on deep learning for named entity recognition in electronic medical records// New York Scientific Data Summit (NYSDS). New York: IEEE; 2016: 1-10.
|
22. |
Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 2: Short Papers). Berlin: Association for Computational Linguistics, 2016: 207-212.
|
23. |
黄梦醒, 李梦龙, 韩惠蕊. 基于电子病历的实体识别和知识图谱构建的研究. 计算机应用研究, 2019, 36(12): 221-225.
|
24. |
Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv: 2018: 1810.04805v2.
|
25. |
Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans: North American Chapter of the Association for Computational Linguistics, 2018: 2227-2237.
|