1. |
樊瑜波. 可穿戴医疗/健康技术——生物医学工程的机遇和挑战. 生物医学工程学杂志, 2016, 33(1): 1.
|
2. |
Blank A A, French J A, Pehlivan A U, et al. Current trends in robot-assisted upper-limb stroke rehabilitation: Promoting patient engagement in therapy. Curr Phys Med Rehabil Rep, 2014, 2(3): 184-195.
|
3. |
黄小海, 喻洪流, 王金超, 等. 中央驱动式多自由度上肢康复训练机器人研究. 生物医学工程学杂志, 2018, 35(3): 452-459.
|
4. |
王露露, 胡鑫, 胡杰, 等. 一种上肢外骨骼康复机器人的控制系统研究. 生物医学工程学杂志, 2016, 33(6): 1168-1175.
|
5. |
李梦晓, 冯丽娟, 张福蓉, 等. 镜像视觉反馈疗法在康复训练中的研究进展. 中国康复理论与实践, 2017, 23(12): 1403-1406.
|
6. |
Sarasola-Sanz A, Irastorza-Landa N, López-Larraz E, et al. Design and efectiveness evaluation of mirror myoelectric interfaces: a novel method to restore movement in hemiplegic patients. Sci Rep, 2018, 8(1): 16688.
|
7. |
Wang W W, Fu L C. Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system//IEEE International Workshop on Medical Measurements & Applications. Bari: IEEE, 2011: 370-375.
|
8. |
Gao Y, Su Y, Dong W, et al. Intention detection in upper limb kinematics rehabilitation using a GP-based control strategy//IEEE/RSJ International Conference on Intelligent Robots & Systems(IROS). Hamburg: IEEE, 2015: 5032-5038.
|
9. |
Kim H J, Lee G C, Song C H. Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients. J Stroke Cerebrovasc, 2014, 23(4): 655-661.
|
10. |
Kojima K, Ikuno K, Morii Y, et al. Feasibility study of a combined treatment of electromyography-triggered neuromuscular stimulation and mirror therapy in stroke patients: A randomized crossover trial. Neurorehabilitation, 2014, 34(2): 235.
|
11. |
Stevens J A, Stoykov M E P. Using motor imagery in the rehabilitation of hemiparesis. Arch Phys Med Rehabil, 2003, 84(7): 1090-1092.
|
12. |
Ding L, Wang X, Guo X, et al. Camera-based mirror visual feedback: Potential to improve motor preparation in stroke patients. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(9): 1897-1905.
|
13. |
Tang S, Lin C, Barsotti M, et al. Kinematic synergy of multi-DoF movement in upper limb and its application for rehabilitation exoskeleton motion planning. Front Neurorobot, 2019, 13(99): 1-13.
|
14. |
Rakesh K, Niclas B, Gutierrez-Farewik E M, et al. A survey of human shoulder functional kinematic representations. Med Biol Eng Comput, 2019, 57: 339-367.
|
15. |
Niyetkaliyev A S, Hussain S, Ghayesh M H, et al. Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans Hum-Mach Syst, 2017, 47(6): 1134-1145.
|
16. |
Sabatelli S, Galgani M, Fanucci L, et al. A double-stage kalman filter for orientation tracking with an integrated processor in 9-D IMU. IEEE Trans Instrum Meas, 2013, 62(3): 590-598.
|
17. |
Watanabe T, Miyazawa T, Shibasaki J. A study on IMU-based stride length estimation for motor disabled subjects: A comparison under different calculation methods of rotation matrix//IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Las Vegas: IEEE, 2018: 70-73.
|
18. |
李洪兴. 变论域自适应模糊控制器. 中国科学: E辑, 1999, 25(1): 32-42.
|
19. |
郭海刚, 李洪兴, 胡凯. 一类变论域自适应模糊控制器. 模糊系统与数学, 2011, 25(6): 1-9.
|
20. |
邵诚, 董希文, 王晓芳. 变论域模糊控制器伸缩因子的选择方法. 信息与控制, 2010, 39(5): 536-541.
|
21. |
Kozuki T, Mizoguchi H, Asano Y, et al. Design methodology for the thorax and shoulder of human mimetic musculoskeletal humanoid Kenshiro—a thorax structure with rib like surface//IEEE/RSJ International Conference on Intelligent Robots & Systems. Vilamoura: IEEE, 2012: 3687-3692.
|
22. |
吴常铖, 宋爱国, 曾洪, 等. 基于sEMG和GRNN的手部输出力估计. 仪器仪表学报, 2017, 38(1): 97-104.
|
23. |
Greff K, Srivastava R K, Koutnik J, et al. LSTM: A search space odyssey. IEEE Trans Neural Netw Learn Syst, 2016, 28(10): 2222-2232.
|