1. |
中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组. 新型冠状病毒肺炎流行病学特征分析. 中华流行病学杂志, 2020, 41(02): 145-151.
|
2. |
Bosch B J, van der Zee R, de Haan C A M, et al. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol, 2003, 77(16): 8801-8811.
|
3. |
Park W B, Kwon N J, Choi S J, et al. Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci, 2020, 35(7): e84.
|
4. |
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 2020. DOI: 10.1007/s11427-020-1637-5.
|
5. |
Li Xingguang, Zai Junjie, Zhao Qiang, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol, 2020. DOI: 10.1002/jmv.25731.
|
6. |
Ji Wei, Wang Wei, Zhao Xiaofang, et al. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol, 2020, 92(4): 433-440.
|
7. |
Wrapp D, Wang N, Corbett K S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020: eabb2507.
|
8. |
Corman V M, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 2020, 25(3). DOI: 10.2807/1560-7917.ES.2020.25.3.2000045.
|
9. |
Chu D K W, Pan Yang, Cheng S M S, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem, 2020. DOI: 10.1093/clinchem/hvaa02s9.
|
10. |
Sunwoo H H, Palaniyappan A, Ganguly A, et al. Quantitative and sensitive detection of the SARS-CoV spike protein using bispecific monoclonal antibody-based enzyme-linked immunoassay. J Virol Methods, 2013, 187(1): 72-78.
|
11. |
Thachil A, Gerber P F, Xiao C T, et al. Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies. PLoS One, 2015, 10(4): e0124363.
|
12. |
Zhao Shan, Smits C, Schuurman N, et al. Development and validation of a S1 protein-based ELISA for the specific detection of antibodies against equine coronavirus. Viruses, 2019, 11(12). DOI: 10.3390/v11121109.
|
13. |
Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res, 2015, 116: 76-84.
|
14. |
Yamamoto M, Matsuyama S, Li X, et al. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated mem-brane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother, 2016, 60: 6532-6539.
|
15. |
Zhou N, Pan T, Zhang J, et al. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J Biol Chem, 2016, 291: 9218-9232.
|
16. |
Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res, 2020, 176: 104742.
|
17. |
Rabaan A A, Alahmed S H, Bazzi A M, et al. A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective. J Med Microbiol, 2017, 66(9): 1261-1274.
|
18. |
Rodon J, Okba N M A, Te N, et al. Blocking transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in llamas by vaccination with a recombinant spike protein. Emerg Microbes Infect, 2019, 8(1): 1593-1603.
|
19. |
Ababneh M, Alrwashdeh M, Khalifeh M. Recombinant adenoviral vaccine encoding the spike 1 subunit of the Middle East Respiratory Syndrome Coronavirus elicits strong humoral and cellular immune responses in mice. Vet World, 2019, 12(10): 1554-1562.
|
20. |
吴瑞平, 孟佳子, 何玉先. SARS 冠状病毒 S 蛋白噬菌体抗原库的构建及筛选. 病毒学报, 2013, 3: 280-286.
|
21. |
Wang N, Rosen O, Wang L, et al. Structural definition of a neutralization-sensitive epitope on the MERS-CoV S1-NTD. Cell Rep, 2019, 28(13): 3395-3405.
|
22. |
Zhou H, Chen Y, Zhang S, et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat Commun, 2019, 10(1): 3068.
|
23. |
Zhang S, Zhou P, Wang P, et al. Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein. Cell Rep, 2018, 24(2): 441-452.
|
24. |
Wang Q, Zhang L, Kuwahara K, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis, 2016, 2(5): 361-376.
|
25. |
Tahir Ul Qamar M, Saleem S, Ashfaq U A, et al. Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study. J Transl Med, 2019, 17(1): 362.
|
26. |
Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol, 2020. DOI: 10.1002/jmv.25698.
|
27. |
Bourbigot S, Beltz H, Denis J, et al. The C-terminal domain of the HIV-1 regulatory protein Vpr adopts an antiparallel dimeric structure in solution via its leucine-zipper-like domain. Biochem J, 2005, 387(Pt 2): 333-341.
|
28. |
Sawaya M R, Sambashivan S, Nelson R, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature, 2007, 447(7143): 453-457.
|
29. |
Cochran A G, Skelton N J, Starovasnik M A. Tryptophan zippers: stable, monomeric beta-hairpins. Proc Natl Acad Sci U S A, 2001, 98(10): 5578-5583.
|
30. |
Liu S, Xiao G, Chen Y, et al. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet, 2004, 363(9413): 938-947.
|
31. |
Bosch B J, Martina B E, van der Zee R, et al. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci U S A, 2004, 101(22): 8455-8460.
|
32. |
Zhang S M, Liao Y, Neo T L, et al. Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein. Int J Biochem Cell Biol, 2018, 101: 103-112.
|