1. |
Qi X, Berzigotti A, Cardenas A, et al. Emerging non-invasive approaches for diagnosis and monitoring of portal hypertension. Lancet Gastroenterol Hepatol, 2018, 3(10): 708-719.
|
2. |
宋珂达, 姜洪池. 门静脉压力无创测定应给予重视. 中华普通外科学文献(电子版), 2018, 12(6): 373-375.
|
3. |
Bolognesi M, Di Pascoli M, Sacerdoti D. Clinical role of non-invasive assessment of portal hypertension. World J Gastroenterol, 2017, 23(1): 15-24.
|
4. |
Ravaioli F, Montagnani M, Lisotti A, et al. Noninvasive assessment of portal hypertension in advanced chronic liver disease: An update. Gastroenterol Res Prac, 2018, 2018: 1-11.
|
5. |
Thabut D, Moreau R, Lebrec D. Noninvasive assessment of portal hypertension in patients with cirrhosis. Hepatology, 2011, 53(2): 683-694.
|
6. |
Addley J, Tham T C, Cash W J. Use of portal pressure studies in the management of variceal haemorrhage. World J Gastrointest Endosc, 2012, 4(7): 281-289.
|
7. |
Leung J C-F, Loong T C-W, Pang J, et al. Invasive and non-invasive assessment of portal hypertension. Hepatol Int, 2018, 12: 44-55.
|
8. |
Levick C, Phillips-Hughes J, Collier J, et al. Non-invasive assessment of portal hypertension by multi-parametric magnetic resonance imaging of the spleen: A proof of concept study. PLoS ONE, 2019, 14(8): e0221066.
|
9. |
Wang J, Gao F, Shen J L. Noninvasive assessment of portal hypertension using spectral computed tomography. J Clin Gastroenterol, 2019, 53(9): e387-e391.
|
10. |
Roccarina D, Rosselli M, Genesca J, et al. Elastography methods for the non-invasive assessment of portal hypertension. Expert Rev Gastroenterol Hepatol, 2018, 12(2): 155-164.
|
11. |
Elmahdy A M, Berzigotti A. Non-invasive measurement of portal pressure. Curr Hepat Rep, 2019, 18: 20-27.
|
12. |
Leeming D J, Veidal S S, Karsdal M A, et al. Pro-C5, a marker of true type V collagen formation and fibrillation, correlates with portal hypertension in patients with alcoholic cirrhosis. Scand J Gastroenterol, 2015, 50(5): 584-592.
|
13. |
La Mura V, Reverter J C, Flores-Arroyo A, et al. Von Willebrand factor levels predict clinical outcome in patients with cirrhosis and portal hypertension. Gut, 2011, 60(8): 1133-1138.
|
14. |
Zhang Q W, Wang Y, Wang J, et al. A non-invasive magnetic resonance imaging-based model predicts portal venous pressure. J Digest Dis, 2016, 17(3): 175-185.
|
15. |
Chen J, Yin M, Talwalkar J A, et al. Diagnostic performance of MR elastography and vibration-controlled transient elastography in the detection of hepatic fibrosis in patients with severe to morbid obesity. Radiology, 2016: 160685.
|
16. |
Andaluz I, Abadía M, Ponce D, et al. SAT-409-Hepatic vein arrival time assessed by contrast-enhanced ultrasound in the non-invasive evaluation of portal hypertension. J Hepatol, 2019, 70(1): e813.
|
17. |
Ferraioli G, Tinelli C, Dal Bello B, et al. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: A pilot study. Hepatology, 2012, 56(6): 2125-2133.
|
18. |
Xie Limei. Real-time elastography for diagnosis of liver fibrosis in chronic hepatitis B. J Ultrasound Med, 2012, 31(7): 1053-1060.
|
19. |
Wiechowska-Kozłowska A, Zasada K, Milkiewicz M, et al. Correlation between endosonographic and Doppler ultrasound features of portal hypertension in patients with cirrhosis. Gastroenterol Res Prac, 2012, 2012(1): 395345.
|
20. |
Elwan N, Salah R, Hamisa M, et al. Evaluation of portal pressure by Doppler ultrasound in patients with cirrhosis before and after simvastatin administration - a randomized controlled trial. F1000 Res, 2018, 7: 256.
|
21. |
Postema M, Gilja O H. Contrast-enhanced and targeted ultrasound. World J Gastroenterol, 2011, 17(1): 28-41.
|
22. |
Jansen C, Bogs C, Verlinden W, et al. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: A prospective multicentre study. Liver Int, 2017, 37(3): 396-405.
|
23. |
吕道文, 张拥军, 赵挺, 等. 超声造影剂微泡次谐波辅助压力估测技术研究进展. 中国医学物理学杂志, 2016, 33(9): 959-962.
|
24. |
Eisenbrey J R, Dave J K, Halldorsdottir V G, et al. Chronic liver disease: Noninvasive subharmonic aided pressure estimation of hepatic venous pressure gradient. Radiology, 2013, 268(2): 581-588.
|
25. |
Li F, Li D, Yan F. Improvement of detection sensitivity of microbubbles as sensors to detect ambient pressure. Sensors, 2018, 18(12): 4083.
|
26. |
Shi W T, Forsberg F, Raichlen J S, et al. Pressure dependence of subharmonic signals from contrast microbubbles. Ultrasound Med Biol, 1999, 25(2): 275-283.
|
27. |
Leodore L M, Forsberg F, Shi W T. P5B-6 in vitro pressure estimation obtained from subharmonic contrast microbubble signals//2007 IEEE Ultrasonics Symposium. New York: IEEE, 2007: 2207-2210.
|
28. |
Andersen K S, Jensen J A. Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent. Ultrasonics, 2010, 50(2): 294-299.
|
29. |
Sun T, Jia N, Zhang D, et al. Ambient pressure dependence of the ultra-harmonic response from contrast microbubbles. J Acoust Soc Am, 2012, 131(6): 4358.
|
30. |
Wu Jun, Fan Tingbo, Xu Di, et al. Investigation on the relationship between overpressure and sub-harmonic response from encapsulated microbubbles. Chin Phys B, 2014, 23(10): 104302.
|
31. |
李德玉, 李飞, 樊瑜波, 等. 基于微泡超声造影剂的血压无创测量装置: CN101982156B. 2010.
|
32. |
李飞. 基于超声造影剂次谐波的无创血压测量方法研究. 北京: 北京航空航天大学, 2012.
|
33. |
Dave J K, Halldorsdottir V G, Eisenbrey J R, et al. Noninvasive LV pressure estimation using subharmonic emissions from microbubbles. JACC-Cardiovasc Imag, 2012, 5(1): 7-92.
|
34. |
黄韫栀, 刘奇, 肖勇. 基于超声RF信号的超声成像实验设计. 实验科学与技术, 2016, 14(6): 32-35, 84.
|
35. |
周志华. 机器学习. 北京: 清华大学出版社, 2016.
|