- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, P.R.China;
Since the emergence of novel coronavirus pneumonia in late 2019, it has quickly spread to many countries and regions around the world, causing a significant impact on human beings and society, posing a great threat to the global public health system. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was highly infectious, and some complications emerged rapidly in some patients, including acute respiratory distress syndrome, and multiple organ failure. The virus could trigger a series of immune responses, which might lead to excessive immune activation, thereby bringing about the immune system imbalance of the body. Up to now, there was no specific antiviral drug, and we conjectured that immunomodulatory therapy might play an essential part in the treatment of coronavirus disease 2019 (COVID-19) as adjuvant therapy. Therefore, we analyzed the possible mechanism of immune imbalance caused by the new coronavirus, and summarized the immunotherapeutic means of COVID-19 based on the mechanisms, to provide some reference for follow-up research and clinical prevention and treatment of COVID-19.
Citation: HAN Ning, DU Lingyao, YAN Libo, TANG Hong. The mechanism and treatment strategies of SARS-CoV-2 mediated inflammatory response. Journal of Biomedical Engineering, 2020, 37(4): 572-578. doi: 10.7507/1001-5515.202003030 Copy
1. | Zhu Na, Zhang Dingyu, Wang Wenling, <italic>et al</italic>. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 2020, 382(8): 727-733. |
2. | Gorbalenya A E, Baker S C, Baric R S, <italic>et al</italic>. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 2020, 5: 536-544. |
3. | Huang Chaolin, Wang Yeming, Li Xingwang, <italic>et al</italic>. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(1223): 497-506. |
4. | Tian Sijia, Nan Hu, Lou Jing, <italic>et al</italic>. Characteristics of COVID-19 infection in Beijing. J Infect, 2020, 80(4): 401-406. |
5. | Chen Nanshan, Zhou Min, Dong Xuan, <italic>et al</italic>. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(1223): 507-513. |
6. | Sun Pengfei, Qie Shuyan, Liu Zongjian, <italic>et al</italic>. Clinical characteristics of hospitalized patients with SARS‐CoV‐2 infection: A single arm meta‐analysis. J Med Virol, 2020, 92(6): 612-617. |
7. | Xu Xintian, Chen Ping, Wang Jingfang, <italic>et al</italic>. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 2020, 63(3): 457-460. |
8. | Xu Zhe, Shi Lei, Wang Yijin, <italic>et al</italic>. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020, 8(4): 420-422. |
9. | Wichmann D, Sperhake J, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med, 2020. DOI: 10.7326/M20-2003. |
10. | Edler C, Schröder A S, Aepfelbacher M, <italic>et al</italic>. Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Legal Med, 2020, 134(4): 1275-1284. |
11. | Chu C, Poon L L, Cheng V C, <italic>et al</italic>. Initial viral load and the outcomes of SARS. CMAJ, 2004, 171(11): 1349-1352. |
12. | Oh M, Park W B, Choe P G, <italic>et al</italic>. Viral load kinetics of MERS coronavirus infection. N Engl J Med, 2016, 375(13): 1303-1305. |
13. | Totura A L, Whitmore A, Agnihothram S, <italic>et al</italic>. Toll-Like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio, 2015, 6(3): 00638-15. |
14. | Zaki A M, Van Boheemen S, Bestebroer T M, <italic>et al</italic>. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012, 367(19): 1814-1820. |
15. | Ng M, Tan S, See E, <italic>et al</italic>. Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol, 2003, 84(12): 3291-3303. |
16. | Wu Chaomin, Chen Xiaoyan, Cai Yanping, <italic>et al</italic>. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in wuhan, China. JAMA Intern Med, 2020: e200994. |
17. | Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res, 2016, 96: 219-243. |
18. | Lu Xiaolu, Pan Ji'an, Tao Jiali, <italic>et al</italic>. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes, 2011, 42(1): 37-45. |
19. | Channappanavar R, Fehr A R, Vijay R A, <italic>et al</italic>. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe, 2016, 19(2): 181-193. |
20. | Minakshi R, Padhan K, Rani M, <italic>et al</italic>. The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One, 2009, 4(12): e8342. |
21. | Li Mengyuan, Li Lin, Zhang Yue, <italic>et al</italic>. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty, 2020, 9(1): 45. |
22. | Pirola C J, Sookoian S. SARS-CoV-2 virus and liver expression of host receptors: Putative mechanisms of liver involvement in COVID-19. Liver International, 2020: 14500. |
23. | Liu Furong, Long Xin, Zhang Bixiang, <italic>et al</italic>. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol, 2020: 040. |
24. | Lamers M M, Beumer J, van der Vaart J, <italic>et al</italic>. SARS-CoV-2 productively infects human gut enterocytes. Science, 2020: eabc1669. |
25. | Liu Xi, Chen Yidong, Tang Wenhao, <italic>et al</italic>. Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci China Life Sci, 2020, 63(7): 1006-1015. |
26. | Glowacka I, Bertram S, Herzog P, <italic>et al</italic>. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol, 2010, 84(2): 1198-1205. |
27. | Dijkman R, Jebbink M F, Deijs M, <italic>et al</italic>. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J Gen Virol, 2012, 93(9): 1924-1929. |
28. | Jia Hongpeng. Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. Shock, 2016, 46(3): 239-248. |
29. | Haga S, Yamamoto N, Nakai-Murakami C, <italic>et al</italic>. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci U S A, 2008, 105(22): 7809-7814. |
30. | Lu Hongzhou. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends, 2020, 14(1): 69-71. |
31. | Almawi W Y, Beyhum H N, Rahme A A, <italic>et al</italic>. Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol, 1996, 60(5): 563-572. |
32. | Wong C K, Lam C W, Wu A, <italic>et al</italic>. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol, 2004, 136(1): 95-103. |
33. | Lee N, Chan K A, Hui D S, <italic>et al</italic>. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol, 2004, 31(4): 304-309. |
34. | Brun-Buisson C, Richard J C, Mercat A, <italic>et al</italic>. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am J Respir Crit Care Med, 2011, 183(9): 1200-1206. |
35. | Griffith J F, Antonio G E, Shekhar M K, <italic>et al</italic>. Osteonecrosis of hip and knee in patients with severe acute respiratory syndrome treated with steroids. Radiology, 2005, 235(1): 168-175. |
36. | Russell C D, Jonathan E M, Baillie J K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(1223): 473-475. |
37. | Al-Tawfiq J A, Momattin H, Dib J, <italic>et al</italic>. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis, 2014, 20: 42-46. |
38. | Haagmans B L, Kuiken T, Martina B E, <italic>et al</italic>. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med, 2004, 10(3): 290-293. |
39. | Omrani A S, Saad M M, Baig K, <italic>et al</italic>. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis, 2014, 14(11): 1090-1095. |
40. | Blazek K, Hayley L E, Weiss M, <italic>et al</italic>. IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. Journal of Experimental Medicine, 2015, 212(6): 845-853. |
41. | Momattin H, Mohammed K, Zumla A, <italic>et al</italic>. Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)--possible lessons from a systematic review of SARS-CoV therapy. Int J Infect Dis, 2013, 17(10): e792-e798. |
42. | 刘鉴峰, 刘金剑, 褚丽萍, 等. 雾化吸入干扰素 α1b 在兔体内的分布及代谢途径. 医药导报, 2013, 32(1): 1-5. |
43. | Geiler J, Michaelis M, Naczk P, <italic>et al</italic>. N-acetyl-l-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem Pharmacol, 2010, 79(3): 413-420. |
44. | Ely J T. Ascorbic acid role in containment of the world avian flu pandemic. Exp Biol Med (Maywood), 2007, 232(7): 847-851. |
45. | Musumeci D, Roviello G N, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther, 2014, 141(3): 347-357. |
46. | Mollica L, De Marchis F, Spitaleri A, <italic>et al</italic>. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol, 2007, 14(4): 431-441. |
47. | 陆海英, 霍娜, 王广发, 等. 复方甘草酸苷治疗传染性非典型肺炎 (SARS) 的临床研究. 中国药房, 2003, 014(10): 34-36. |
48. | Michaelis M, Geiler J, Naczk P, <italic>et al</italic>. Glycyrrhizin exerts antioxidative effects in H5N1 influenza a Virus-Infected cells and inhibits virus replication and Pro-Inflammatory gene expression. PLoS One, 2011, 6(5): e19705. |
49. | Yang Huan, Ochani M, Li Jianhua, <italic>et al</italic>. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A, 2004, 101(1): 296-301. |
50. | Alleva L M, Alison C B, Clark I A. Systemic release of high mobility group box 1 protein during severe murine influenza. The Journal of Immunology, 2008, 181(2): 1454-1459. |
51. | Fedson D S. Treating influenza with statins and other immunomodulatory agents. Antiviral Res, 2013, 99(3): 417-435. |
52. | Yan Yiwu, Zhen Zou, Yang Sun, <italic>et al</italic>. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res, 2013, 23(2): 300-302. |
53. | Wang Manli, Cao Ruiyuan, Zhang Leike, <italic>et al</italic>. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) <italic>in vitro</italic>. Cell Res, 2020, 30(3): 269-271. |
54. | Zarogoulidis P, Papanas N, Kioumis I, <italic>et al</italic>. Macrolides: from <italic>in vitro</italic> anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol, 2012, 68(5): 479-503. |
55. | Nelson L, Chun-Kwok W, Martin C C, <italic>et al</italic>. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: A randomized controlled trial. Antiviral Res, 2017, 144: 48-56. |
56. | Duan Zhongping, Jia Zhenhua, Zhang Jian, <italic>et al</italic>. Natural herbal medicine Lianhuaqingwen capsule anti-influenza A (H1N1) trial: a randomized, double blind, positive controlled clinical trial. Chin Med J, 2011, 124(18): 2925-2933. |
57. | 姚开涛, 刘明瑜, 李欣, 等. 中药连花清瘟治疗新型冠状病毒肺炎的回顾性临床分析. 中国实验方剂学杂志, 2020, 26(11): 8-12. |
58. | Li Runfeng, Hou Yunlong, Huang Jicheng, <italic>et al</italic>. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacological Research, 2020, 156: 104761. |
59. | Mcdermott J E, Mitchell H D, Gralinski L E, <italic>et al</italic>. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus. BMC Syst Biol, 2016, 10(1): 93. |
60. | Szretter K J, Gangappa S, Xuihua L, <italic>et al</italic>. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol, 2007, 81(6): 2736-2744. |
61. | Wang Dawei, Bo Hu, Chang Hu, <italic>et al</italic>. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, China. JAMA, 2020, 323(11): 1061. |
62. | Augello A, Tasso R, Negrini S M, <italic>et al</italic>. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum, 2007, 56(4): 1175-1186. |
63. | Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008, 8(9): 726-736. |
64. | Lee J W, FANG Xiaohui, Gupta N, <italic>et al</italic>. Allogeneic human mesenchymal stem cells for treatment of <italic>E. coli</italic> endotoxin-induced acute lung injury in the <italic>ex vivo</italic> perfused human lung. Proc Natl Acad Sci U S A, 2009, 106(38): 16357-16362. |
65. | Hung I F, To K K, Lee C K, <italic>et al</italic>. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clinical Infectious Diseases, 2011, 52(4): 447-456. |
66. | 陈煜, 段钟平, 李德新, 等. 连续性血液净化阻断 SARS 发病早期病情进展的初步研究. 中国血液净化, 2005, 4(2): 73-76. |
67. | Teijaro J, Walsh K, Cahalan S, <italic>et al</italic>. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell, 2011, 146(6): 980-991. |
68. | Walsh K B, Teijaro J R, Wilker P R, <italic>et al</italic>. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proceedings of the National Academy of Sciences, 2011, 108(29): 12018-12023. |
- 1. Zhu Na, Zhang Dingyu, Wang Wenling, <italic>et al</italic>. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 2020, 382(8): 727-733.
- 2. Gorbalenya A E, Baker S C, Baric R S, <italic>et al</italic>. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 2020, 5: 536-544.
- 3. Huang Chaolin, Wang Yeming, Li Xingwang, <italic>et al</italic>. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(1223): 497-506.
- 4. Tian Sijia, Nan Hu, Lou Jing, <italic>et al</italic>. Characteristics of COVID-19 infection in Beijing. J Infect, 2020, 80(4): 401-406.
- 5. Chen Nanshan, Zhou Min, Dong Xuan, <italic>et al</italic>. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(1223): 507-513.
- 6. Sun Pengfei, Qie Shuyan, Liu Zongjian, <italic>et al</italic>. Clinical characteristics of hospitalized patients with SARS‐CoV‐2 infection: A single arm meta‐analysis. J Med Virol, 2020, 92(6): 612-617.
- 7. Xu Xintian, Chen Ping, Wang Jingfang, <italic>et al</italic>. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 2020, 63(3): 457-460.
- 8. Xu Zhe, Shi Lei, Wang Yijin, <italic>et al</italic>. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020, 8(4): 420-422.
- 9. Wichmann D, Sperhake J, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med, 2020. DOI: 10.7326/M20-2003.
- 10. Edler C, Schröder A S, Aepfelbacher M, <italic>et al</italic>. Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Legal Med, 2020, 134(4): 1275-1284.
- 11. Chu C, Poon L L, Cheng V C, <italic>et al</italic>. Initial viral load and the outcomes of SARS. CMAJ, 2004, 171(11): 1349-1352.
- 12. Oh M, Park W B, Choe P G, <italic>et al</italic>. Viral load kinetics of MERS coronavirus infection. N Engl J Med, 2016, 375(13): 1303-1305.
- 13. Totura A L, Whitmore A, Agnihothram S, <italic>et al</italic>. Toll-Like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio, 2015, 6(3): 00638-15.
- 14. Zaki A M, Van Boheemen S, Bestebroer T M, <italic>et al</italic>. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012, 367(19): 1814-1820.
- 15. Ng M, Tan S, See E, <italic>et al</italic>. Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol, 2003, 84(12): 3291-3303.
- 16. Wu Chaomin, Chen Xiaoyan, Cai Yanping, <italic>et al</italic>. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in wuhan, China. JAMA Intern Med, 2020: e200994.
- 17. Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res, 2016, 96: 219-243.
- 18. Lu Xiaolu, Pan Ji'an, Tao Jiali, <italic>et al</italic>. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes, 2011, 42(1): 37-45.
- 19. Channappanavar R, Fehr A R, Vijay R A, <italic>et al</italic>. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe, 2016, 19(2): 181-193.
- 20. Minakshi R, Padhan K, Rani M, <italic>et al</italic>. The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One, 2009, 4(12): e8342.
- 21. Li Mengyuan, Li Lin, Zhang Yue, <italic>et al</italic>. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty, 2020, 9(1): 45.
- 22. Pirola C J, Sookoian S. SARS-CoV-2 virus and liver expression of host receptors: Putative mechanisms of liver involvement in COVID-19. Liver International, 2020: 14500.
- 23. Liu Furong, Long Xin, Zhang Bixiang, <italic>et al</italic>. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol, 2020: 040.
- 24. Lamers M M, Beumer J, van der Vaart J, <italic>et al</italic>. SARS-CoV-2 productively infects human gut enterocytes. Science, 2020: eabc1669.
- 25. Liu Xi, Chen Yidong, Tang Wenhao, <italic>et al</italic>. Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci China Life Sci, 2020, 63(7): 1006-1015.
- 26. Glowacka I, Bertram S, Herzog P, <italic>et al</italic>. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol, 2010, 84(2): 1198-1205.
- 27. Dijkman R, Jebbink M F, Deijs M, <italic>et al</italic>. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J Gen Virol, 2012, 93(9): 1924-1929.
- 28. Jia Hongpeng. Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. Shock, 2016, 46(3): 239-248.
- 29. Haga S, Yamamoto N, Nakai-Murakami C, <italic>et al</italic>. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci U S A, 2008, 105(22): 7809-7814.
- 30. Lu Hongzhou. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends, 2020, 14(1): 69-71.
- 31. Almawi W Y, Beyhum H N, Rahme A A, <italic>et al</italic>. Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol, 1996, 60(5): 563-572.
- 32. Wong C K, Lam C W, Wu A, <italic>et al</italic>. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol, 2004, 136(1): 95-103.
- 33. Lee N, Chan K A, Hui D S, <italic>et al</italic>. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol, 2004, 31(4): 304-309.
- 34. Brun-Buisson C, Richard J C, Mercat A, <italic>et al</italic>. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am J Respir Crit Care Med, 2011, 183(9): 1200-1206.
- 35. Griffith J F, Antonio G E, Shekhar M K, <italic>et al</italic>. Osteonecrosis of hip and knee in patients with severe acute respiratory syndrome treated with steroids. Radiology, 2005, 235(1): 168-175.
- 36. Russell C D, Jonathan E M, Baillie J K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(1223): 473-475.
- 37. Al-Tawfiq J A, Momattin H, Dib J, <italic>et al</italic>. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis, 2014, 20: 42-46.
- 38. Haagmans B L, Kuiken T, Martina B E, <italic>et al</italic>. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med, 2004, 10(3): 290-293.
- 39. Omrani A S, Saad M M, Baig K, <italic>et al</italic>. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis, 2014, 14(11): 1090-1095.
- 40. Blazek K, Hayley L E, Weiss M, <italic>et al</italic>. IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. Journal of Experimental Medicine, 2015, 212(6): 845-853.
- 41. Momattin H, Mohammed K, Zumla A, <italic>et al</italic>. Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)--possible lessons from a systematic review of SARS-CoV therapy. Int J Infect Dis, 2013, 17(10): e792-e798.
- 42. 刘鉴峰, 刘金剑, 褚丽萍, 等. 雾化吸入干扰素 α1b 在兔体内的分布及代谢途径. 医药导报, 2013, 32(1): 1-5.
- 43. Geiler J, Michaelis M, Naczk P, <italic>et al</italic>. N-acetyl-l-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem Pharmacol, 2010, 79(3): 413-420.
- 44. Ely J T. Ascorbic acid role in containment of the world avian flu pandemic. Exp Biol Med (Maywood), 2007, 232(7): 847-851.
- 45. Musumeci D, Roviello G N, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther, 2014, 141(3): 347-357.
- 46. Mollica L, De Marchis F, Spitaleri A, <italic>et al</italic>. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol, 2007, 14(4): 431-441.
- 47. 陆海英, 霍娜, 王广发, 等. 复方甘草酸苷治疗传染性非典型肺炎 (SARS) 的临床研究. 中国药房, 2003, 014(10): 34-36.
- 48. Michaelis M, Geiler J, Naczk P, <italic>et al</italic>. Glycyrrhizin exerts antioxidative effects in H5N1 influenza a Virus-Infected cells and inhibits virus replication and Pro-Inflammatory gene expression. PLoS One, 2011, 6(5): e19705.
- 49. Yang Huan, Ochani M, Li Jianhua, <italic>et al</italic>. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A, 2004, 101(1): 296-301.
- 50. Alleva L M, Alison C B, Clark I A. Systemic release of high mobility group box 1 protein during severe murine influenza. The Journal of Immunology, 2008, 181(2): 1454-1459.
- 51. Fedson D S. Treating influenza with statins and other immunomodulatory agents. Antiviral Res, 2013, 99(3): 417-435.
- 52. Yan Yiwu, Zhen Zou, Yang Sun, <italic>et al</italic>. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res, 2013, 23(2): 300-302.
- 53. Wang Manli, Cao Ruiyuan, Zhang Leike, <italic>et al</italic>. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) <italic>in vitro</italic>. Cell Res, 2020, 30(3): 269-271.
- 54. Zarogoulidis P, Papanas N, Kioumis I, <italic>et al</italic>. Macrolides: from <italic>in vitro</italic> anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol, 2012, 68(5): 479-503.
- 55. Nelson L, Chun-Kwok W, Martin C C, <italic>et al</italic>. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: A randomized controlled trial. Antiviral Res, 2017, 144: 48-56.
- 56. Duan Zhongping, Jia Zhenhua, Zhang Jian, <italic>et al</italic>. Natural herbal medicine Lianhuaqingwen capsule anti-influenza A (H1N1) trial: a randomized, double blind, positive controlled clinical trial. Chin Med J, 2011, 124(18): 2925-2933.
- 57. 姚开涛, 刘明瑜, 李欣, 等. 中药连花清瘟治疗新型冠状病毒肺炎的回顾性临床分析. 中国实验方剂学杂志, 2020, 26(11): 8-12.
- 58. Li Runfeng, Hou Yunlong, Huang Jicheng, <italic>et al</italic>. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacological Research, 2020, 156: 104761.
- 59. Mcdermott J E, Mitchell H D, Gralinski L E, <italic>et al</italic>. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus. BMC Syst Biol, 2016, 10(1): 93.
- 60. Szretter K J, Gangappa S, Xuihua L, <italic>et al</italic>. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol, 2007, 81(6): 2736-2744.
- 61. Wang Dawei, Bo Hu, Chang Hu, <italic>et al</italic>. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, China. JAMA, 2020, 323(11): 1061.
- 62. Augello A, Tasso R, Negrini S M, <italic>et al</italic>. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum, 2007, 56(4): 1175-1186.
- 63. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008, 8(9): 726-736.
- 64. Lee J W, FANG Xiaohui, Gupta N, <italic>et al</italic>. Allogeneic human mesenchymal stem cells for treatment of <italic>E. coli</italic> endotoxin-induced acute lung injury in the <italic>ex vivo</italic> perfused human lung. Proc Natl Acad Sci U S A, 2009, 106(38): 16357-16362.
- 65. Hung I F, To K K, Lee C K, <italic>et al</italic>. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clinical Infectious Diseases, 2011, 52(4): 447-456.
- 66. 陈煜, 段钟平, 李德新, 等. 连续性血液净化阻断 SARS 发病早期病情进展的初步研究. 中国血液净化, 2005, 4(2): 73-76.
- 67. Teijaro J, Walsh K, Cahalan S, <italic>et al</italic>. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell, 2011, 146(6): 980-991.
- 68. Walsh K B, Teijaro J R, Wilker P R, <italic>et al</italic>. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proceedings of the National Academy of Sciences, 2011, 108(29): 12018-12023.