1. |
马显志, 韩生寿, 马骏, 等. 股骨干骨折术后骨折不愈合的治疗进展. 中华骨与关节外科杂志, 2018, 11(5): 390-400.
|
2. |
孙再杰, 杨思宇, 张国栋, 等. 动力化治疗下肢长骨骨折术后延迟愈合的研究进展. 中华老年骨科与康复电子杂志, 2019, 5(2): 118-122.
|
3. |
魏娜, 张萍, 于莉, 等. 间充质干细胞在骨折愈合中作用的研究进展. 实用医药杂志, 2018, 35(6): 562-566.
|
4. |
何芬. 促进骨折愈合的物理治疗方法的进展. 中医临床研究, 2018, 10(33): 99-101.
|
5. |
Borgiani E, Duda G N, Checa S. Multiscale modeling of bone healing: toward a systems biology approach. Front Physiol, 2017, 8: 287.
|
6. |
Miramini S, Yang Yi, Zhang Lihai. A probabilistic-based approach for computational simulation of bone fracture healing. Comput Methods Programs Biomed, 2019, 180: 105011.
|
7. |
Ghiasi M S, Chen J, Vaziri A, et al. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep, 2017, 6: 87-100.
|
8. |
Wang M, Yang Ning, Wang Xinyu. A review of computational models of bone fracture healing. Med Biol Eng Comput, 2017, 55(11): 1895-1914.
|
9. |
Isaksson H. Recent advances in mechanobiological modeling of bone regeneration. Mech Res Commun, 2012, 42: 22-31.
|
10. |
Kennedy R C, Marmor M, Marcucio R, et al. Simulation enabled search for explanatory mechanisms of the fracture healing process. PLoS Comput Biol, 2018, 14(2): e1005980.
|
11. |
Ghiasi M S, Chen J E, Rodriguez E K, et al. Computational modeling of human bone fracture healing affected by different conditions of initial healing stage. BMC Musculoskelet Disord, 2019, 20(1): 562.
|
12. |
薛徽, 孙瑶. 影响骨折愈合的生物因素研究新进展. 口腔医学, 2018, 38(11): 1043-1047.
|
13. |
Bahney C S, Zondervan R L, Allison P, et al. Cellular biology of fracture healing. J Orthop Res, 2019, 37(1): 35-50.
|
14. |
Wang M, Yang Ning. Three-dimensional computational model simulating the fracture healing process with both biphasic poroelastic finite element analysis and fuzzy logic control. Sci Rep, 2018, 8(1): 6744.
|
15. |
Aziz A U A, Wahab A A, Ramlee M H. Relationship between strain and healing process for the use of external fixator: a short review//2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Kuching: IEEE, 2018: 87–92.
|
16. |
Reich K M, Tangl S, Heimel P, et al. Histomorphometric analysis of callus formation stimulated by axial dynamisation in a standardised ovine osteotomy model. Biomed Res Int, 2019, 2019: 4250940.
|
17. |
de Barros e Lima Bueno R, Dias A P, Ponce K J, et al. Bone healing response in cyclically loaded implants: comparing zero, one, and two loading sessions per day. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85: 152-161.
|
18. |
Wilson C J, Schütz M A, Epari D R. Computational simulation of bone fracture healing under inverse dynamisation. Biomech Model Mechanobiol, 2017, 16(1): 5-14.
|
19. |
Vavva M G, Grivas K N, Carlier A, et al. Effect of ultrasound on bone fracture healing: a computational bioregulatory model. Comput Biol Med, 2018, 100: 74-85.
|
20. |
王沫楠. 基于血液供给条件和力学环境的骨折愈合仿真. 自动化学报, 2018, 44(2): 240-250.
|
21. |
王新宇. 力和组织内氧气调控的骨折愈合过程仿真. 哈尔滨: 哈尔滨理工大学, 2019.
|
22. |
Prendergast P J, Huiskes R, Søballe K. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech, 1997, 30(6): 539-548.
|
23. |
Claes L E, Heigele C A. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech, 1999, 32(3): 255-266.
|
24. |
Ghimire S, Miramini S, Richardson M, et al. Role of dynamic loading on early stage of bone fracture healing. Ann Biomed Eng, 2018, 46(11): 1768-1784.
|
25. |
Lipphaus A, Witzel U. Finite-Element syntheses of callus and bone remodeling: biomechanical study of fracture healing in long bones. Anat Rec (Hoboken), 2018, 301(12): 2112-2121.
|
26. |
Pietsch M, Niemeyer F, Simon U, et al. Modelling the fracture-healing process as a moving-interface problem using an interface-capturing approach. Comput Methods Biomech Biomed Engin, 2018, 21(8): 512-520.
|
27. |
Ren T. Dailey H L. Mechanoregulation modeling of bone healing in realistic fracture geometries. Biomech Model Mechanobiol, 2020. DOI: https://doi.org/10.1007/s10237-020-01340-5.
|
28. |
Borgiani E, Figge C, Kruck B, et al. Age-related changes in the mechanical regulation of bone healing are explained by altered cellular mechanoresponse. J Bone Miner Res, 2019, 34(10): 1923-1937.
|
29. |
Grivas K N, Vavva M G, Polyzos D, et al. Effect of ultrasound on bone fracture healing: a computational mechanobioregulatory model. J Acoust Soc Am, 2019, 145(2): 1048.
|
30. |
Ganadhiepan G, Zhang Lihai, Miramini S, et al. The effects of dynamic loading on bone fracture healing under ilizarov circular fixators. J Biomech Eng, 2019, 141(5): 1-12.
|
31. |
Trejo I, Kojouharov H V, Chen-Charpentier B M. Modeling the effects of growth factors on bone fracture healing. AIP Conf Proc, 2019, 2164(020003): 1-14.
|
32. |
Pauwels F. A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z Anat Entwicklungsgesch, 1960, 121(6): 478-515.
|
33. |
Carter D R, Beaupré G S, Giori N J, et al. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res, 1998(355 Suppl): S41-S55.
|
34. |
Checa S, Prendergast P J. A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng, 2009, 37(1): 129-145.
|
35. |
Ament C, Hofer E P. A fuzzy logic model of fracture healing. J Biomech, 2000, 33(8): 961-968.
|